Пример #1
0
                         _DEFAULT_KERNEL_SIZES, _DEFAULT_NUM_LAYERS,
                         _DEFAULT_SKIPS)
    trainer = PyTorchImageClassificationTrainer(
        base_model,
        dataset_cls="CIFAR10",
        dataset_kwargs={
            "root": "data/cifar10",
            "download": True
        },
        dataloader_kwargs={"batch_size": 32},
        optimizer_kwargs={"lr": 1e-3},
        trainer_kwargs={"max_epochs": 1})

    # new interface
    applied_mutators = []
    applied_mutators.append(BlockMutator('mutable_0'))
    applied_mutators.append(BlockMutator('mutable_1'))

    simple_startegy = TPEStrategy()

    exp = RetiariiExperiment(base_model, trainer, applied_mutators,
                             simple_startegy)

    exp_config = RetiariiExeConfig('local')
    exp_config.experiment_name = 'mnasnet_search'
    exp_config.trial_concurrency = 2
    exp_config.max_trial_number = 10
    exp_config.training_service.use_active_gpu = False

    exp.run(exp_config, 8081)
Пример #2
0
    test_dataset = serialize(CIFAR10,
                             root='data/cifar10',
                             train=False,
                             download=True,
                             transform=valid_transform)
    # trainer = pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
    #                             val_dataloaders=pl.DataLoader(test_dataset, batch_size=100),
    #                             max_epochs=1, limit_train_batches=0.2)
    trainer = cgo.Classification(train_dataloader=pl.DataLoader(
        train_dataset, batch_size=100),
                                 val_dataloaders=pl.DataLoader(test_dataset,
                                                               batch_size=100),
                                 max_epochs=1,
                                 limit_train_batches=0.2)

    applied_mutators = [BlockMutator('mutable_0'), BlockMutator('mutable_1')]

    simple_strategy = TPEStrategy()

    exp = RetiariiExperiment(base_model, trainer, applied_mutators,
                             simple_strategy)

    exp_config = RetiariiExeConfig('remote')
    exp_config.experiment_name = 'darts_search'
    exp_config.trial_concurrency = 3
    exp_config.max_trial_number = 10
    exp_config.trial_gpu_number = 1
    exp_config.training_service.reuse_mode = True

    rm_conf = RemoteMachineConfig()
    rm_conf.host = '127.0.0.1'
Пример #3
0
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])
    valid_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])
    train_dataset = serialize(CIFAR10, root='data/cifar10', train=True, download=True, transform=train_transform)
    test_dataset = serialize(CIFAR10, root='data/cifar10', train=False, download=True, transform=valid_transform)
    trainer = pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
                                val_dataloaders=pl.DataLoader(test_dataset, batch_size=100),
                                max_epochs=1, limit_train_batches=0.2)

    applied_mutators = [
        BlockMutator('mutable_0'),
        BlockMutator('mutable_1')
    ]

    simple_strategy = TPEStrategy()

    exp = RetiariiExperiment(base_model, trainer, applied_mutators, simple_strategy)

    exp_config = RetiariiExeConfig('local')
    exp_config.experiment_name = 'mnasnet_search'
    exp_config.trial_concurrency = 2
    exp_config.max_trial_number = 10
    exp_config.training_service.use_active_gpu = False

    exp.run(exp_config, 8097)