def _get_rnn_cell(mode, num_layers, input_size, hidden_size, dropout, weight_dropout, var_drop_in, var_drop_state, var_drop_out, skip_connection, proj_size=None, cell_clip=None, proj_clip=None): """create rnn cell given specs Parameters ---------- mode : str The type of RNN cell to use. Options are 'lstmpc', 'rnn_tanh', 'rnn_relu', 'lstm', 'gru'. num_layers : int The number of RNN cells in the encoder. input_size : int The initial input size of in the RNN cell. hidden_size : int The hidden size of the RNN cell. dropout : float The dropout rate to use for encoder output. weight_dropout: float The dropout rate to the hidden to hidden connections. var_drop_in: float The variational dropout rate for inputs. Won’t apply dropout if it equals 0. var_drop_state: float The variational dropout rate for state inputs on the first state channel. Won’t apply dropout if it equals 0. var_drop_out: float The variational dropout rate for outputs. Won’t apply dropout if it equals 0. skip_connection : bool Whether to add skip connections (add RNN cell input to output) proj_size : int The projection size of each LSTMPCellWithClip cell. Only available when the mode=lstmpc. cell_clip : float Clip cell state between [-cellclip, cell_clip] in LSTMPCellWithClip cell. Only available when the mode=lstmpc. proj_clip : float Clip projection between [-projclip, projclip] in LSTMPCellWithClip cell Only available when the mode=lstmpc. """ assert mode == 'lstmpc' or proj_size is None, \ 'proj_size takes effect only when mode is lstmpc' assert mode == 'lstmpc' or cell_clip is None, \ 'cell_clip takes effect only when mode is lstmpc' assert mode == 'lstmpc' or proj_clip is None, \ 'proj_clip takes effect only when mode is lstmpc' rnn_cell = rnn.HybridSequentialRNNCell() with rnn_cell.name_scope(): for i in range(num_layers): if mode == 'rnn_relu': cell = rnn.RNNCell(hidden_size, 'relu', input_size=input_size) elif mode == 'rnn_tanh': cell = rnn.RNNCell(hidden_size, 'tanh', input_size=input_size) elif mode == 'lstm': cell = rnn.LSTMCell(hidden_size, input_size=input_size) elif mode == 'gru': cell = rnn.GRUCell(hidden_size, input_size=input_size) elif mode == 'lstmpc': cell = LSTMPCellWithClip(hidden_size, proj_size, cell_clip=cell_clip, projection_clip=proj_clip, input_size=input_size) if var_drop_in + var_drop_state + var_drop_out != 0: cell = contrib.rnn.VariationalDropoutCell( cell, var_drop_in, var_drop_state, var_drop_out) if skip_connection: cell = rnn.ResidualCell(cell) rnn_cell.add(cell) if i != num_layers - 1 and dropout != 0: rnn_cell.add(rnn.DropoutCell(dropout)) if weight_dropout: apply_weight_drop(rnn_cell, 'h2h_weight', rate=weight_dropout) return rnn_cell
def _get_rnn_cell(mode, num_layers, input_size, hidden_size, dropout, var_drop_in, var_drop_state, var_drop_out, skip_connection, proj_size=None): """create rnn cell given specs Parameters ---------- mode : str The type of RNN cell to use. Options are 'rnn_tanh', 'rnn_relu', 'lstm', 'lstmp', 'gru'. num_layers : int The number of RNN cells in the encoder. input_size : int The initial input size of in the RNN cell. hidden_size : int The hidden size of the RNN cell. dropout : float The dropout rate to use for encoder output. var_drop_in: float The variational dropout rate for inputs. Won’t apply dropout if it equals 0. var_drop_state: float The variational dropout rate for state inputs on the first state channel. Won’t apply dropout if it equals 0. var_drop_out: float The variational dropout rate for outputs. Won’t apply dropout if it equals 0. skip_connection : bool Whether to add skip connections (add RNN cell input to output) proj_size : int The projection size of each LSTMPCell cell. Only available when the mode=lstmpc. """ if mode == 'lstmps': assert proj_size is not None, \ 'proj_size takes effect only when mode is lstmp' rnn_cell = rnn.HybridSequentialRNNCell() with rnn_cell.name_scope(): for i in range(num_layers): if mode == 'rnn_relu': cell = rnn.RNNCell(hidden_size, 'relu', input_size=input_size) elif mode == 'rnn_tanh': cell = rnn.RNNCell(hidden_size, 'tanh', input_size=input_size) elif mode == 'lstm': cell = rnn.LSTMCell(hidden_size, input_size=input_size) elif mode == 'lstmp': cell = gluon.contrib.rnn.LSTMPCell(hidden_size, input_size, proj_size) elif mode == 'gru': cell = rnn.GRUCell(hidden_size, input_size=input_size) if var_drop_in + var_drop_state + var_drop_out != 0: cell = gluon.contrib.rnn.VariationalDropoutCell( cell, var_drop_in, var_drop_state, var_drop_out) if skip_connection: cell = rnn.ResidualCell(cell) rnn_cell.add(cell) if i != num_layers - 1 and dropout != 0: rnn_cell.add(rnn.DropoutCell(dropout)) return rnn_cell