Пример #1
0
    def reshape(self, data_shapes, label_shapes=None):
        """Reshapes the module for new input shapes.

        Parameters
        ----------
        data_shapes : list of (str, tuple)
            Typically is ``data_iter.provide_data``.
        label_shapes : list of (str, tuple)
            Typically is ``data_iter.provide_label``.
        """
        assert self.binded
        self._data_shapes, self._label_shapes = _parse_data_desc(
            self.data_names, self.label_names, data_shapes, label_shapes)

        self._exec_group.reshape(self._data_shapes, self._label_shapes)
Пример #2
0
    def reshape(self, data_shapes, label_shapes=None):
        """Reshape the module for new input shapes.

        Parameters
        ----------
        data_shapes : list of (str, tuple)
            Typically is `data_iter.provide_data`.
        label_shapes : list of (str, tuple)
            Typically is `data_iter.provide_label`.
        """
        assert self.binded
        # self._data_shapes, self._label_shapes = _parse_data_desc(
        #     self.data_names, self.label_names, data_shapes, label_shapes)
        self._data_shapes, self._label_shapes = zip(*[_parse_data_desc(self.data_names, self.label_names, data_shape, label_shape)
                                                      for data_shape, label_shape in zip(data_shapes, label_shapes)])

        self._exec_group.reshape(self._data_shapes, self._label_shapes)
Пример #3
0
    def bind(self, data_shapes, label_shapes=None, for_training=True,
             inputs_need_grad=False, force_rebind=False, shared_module=None,
             grad_req='write'):
        """Bind the symbols to construct executors. This is necessary before one
        can perform computation with the module.

        Parameters
        ----------
        data_shapes : list of (str, tuple)
            Typically is `data_iter.provide_data`.
        label_shapes : list of (str, tuple)
            Typically is `data_iter.provide_label`.
        for_training : bool
            Default is `True`. Whether the executors should be bind for training.
        inputs_need_grad : bool
            Default is `False`. Whether the gradients to the input data need to be computed.
            Typically this is not needed. But this might be needed when implementing composition
            of modules.
        force_rebind : bool
            Default is `False`. This function does nothing if the executors are already
            binded. But with this `True`, the executors will be forced to rebind.
        shared_module : Module
            Default is `None`. This is used in bucketing. When not `None`, the shared module
            essentially corresponds to a different bucket -- a module with different symbol
            but with the same sets of parameters (e.g. unrolled RNNs with different lengths).
        """
        # force rebinding is typically used when one want to switch from
        # training to prediction phase.
        if force_rebind:
            self._reset_bind()

        if self.binded:
            self.logger.warning('Already binded, ignoring bind()')
            return

        self.for_training = for_training
        self.inputs_need_grad = inputs_need_grad
        self.binded = True
        self._grad_req = grad_req

        if not for_training:
            assert not inputs_need_grad
        else:
            pass
            # this is not True, as some module might not contains a loss function
            # that consumes the labels
            # assert label_shapes is not None

        # self._data_shapes, self._label_shapes = _parse_data_desc(
        #     self.data_names, self.label_names, data_shapes, label_shapes)
        self._data_shapes, self._label_shapes = zip(*[_parse_data_desc(self.data_names, self.label_names, data_shape, label_shape)
                                                      for data_shape, label_shape in zip(data_shapes, label_shapes)])
        if self._label_shapes.count(None) == len(self._label_shapes):
            self._label_shapes = None

        if shared_module is not None:
            assert isinstance(shared_module, Module) and \
                    shared_module.binded and shared_module.params_initialized
            shared_group = shared_module._exec_group
        else:
            shared_group = None

        self._exec_group = DataParallelExecutorGroup(self._symbol, self._context,
                                                     self._work_load_list, self._data_shapes,
                                                     self._label_shapes, self._param_names,
                                                     for_training, inputs_need_grad,
                                                     shared_group, logger=self.logger,
                                                     fixed_param_names=self._fixed_param_names,
                                                     grad_req=grad_req,
                                                     state_names=self._state_names)
        # self._total_exec_bytes = self._exec_group._total_exec_bytes
        if shared_module is not None:
            self.params_initialized = True
            self._arg_params = shared_module._arg_params
            self._aux_params = shared_module._aux_params
        elif self.params_initialized:
            # if the parameters are already initialized, we are re-binding
            # so automatically copy the already initialized params
            self._exec_group.set_params(self._arg_params, self._aux_params)
        else:
            assert self._arg_params is None and self._aux_params is None
            param_arrays = [
                nd.zeros(x[0].shape, dtype=x[0].dtype)
                for x in self._exec_group.param_arrays
            ]
            self._arg_params = {name:arr for name, arr in zip(self._param_names, param_arrays)}

            aux_arrays = [
                nd.zeros(x[0].shape, dtype=x[0].dtype)
                for x in self._exec_group.aux_arrays
            ]
            self._aux_params = {name:arr for name, arr in zip(self._aux_names, aux_arrays)}

        if shared_module is not None and shared_module.optimizer_initialized:
            self.borrow_optimizer(shared_module)
Пример #4
0
    def bind(self, data_shapes, label_shapes=None, for_training=True,
             inputs_need_grad=False, force_rebind=False, shared_module=None,
             grad_req='write'):
        """Bind the symbols to construct executors. This is necessary before one
        can perform computation with the module.

        Parameters
        ----------
        data_shapes : list of (str, tuple)
            Typically is `data_iter.provide_data`.
        label_shapes : list of (str, tuple)
            Typically is `data_iter.provide_label`.
        for_training : bool
            Default is `True`. Whether the executors should be bind for training.
        inputs_need_grad : bool
            Default is `False`. Whether the gradients to the input data need to be computed.
            Typically this is not needed. But this might be needed when implementing composition
            of modules.
        force_rebind : bool
            Default is `False`. This function does nothing if the executors are already
            binded. But with this `True`, the executors will be forced to rebind.
        shared_module : Module
            Default is `None`. This is used in bucketing. When not `None`, the shared module
            essentially corresponds to a different bucket -- a module with different symbol
            but with the same sets of parameters (e.g. unrolled RNNs with different lengths).
        """
        # force rebinding is typically used when one want to switch from
        # training to prediction phase.
        if force_rebind:
            self._reset_bind()

        if self.binded:
            self.logger.warning('Already binded, ignoring bind()')
            return

        self.for_training = for_training
        self.inputs_need_grad = inputs_need_grad
        self.binded = True
        self._grad_req = grad_req

        if not for_training:
            assert not inputs_need_grad
        else:
            pass
            # this is not True, as some module might not contains a loss function
            # that consumes the labels
            # assert label_shapes is not None

        # self._data_shapes, self._label_shapes = _parse_data_desc(
        #     self.data_names, self.label_names, data_shapes, label_shapes)
        self._data_shapes, self._label_shapes = zip(*[_parse_data_desc(self.data_names, self.label_names, data_shape, label_shape)
                                                      for data_shape, label_shape in zip(data_shapes, label_shapes)])
        if self._label_shapes.count(None) == len(self._label_shapes):
            self._label_shapes = None

        if shared_module is not None:
            assert isinstance(shared_module, Module) and \
                    shared_module.binded and shared_module.params_initialized
            shared_group = shared_module._exec_group
        else:
            shared_group = None
        self._exec_group = DataParallelExecutorGroup(self._symbol, self._context,
                                                     self._work_load_list, self._data_shapes,
                                                     self._label_shapes, self._param_names,
                                                     for_training, inputs_need_grad,
                                                     shared_group, logger=self.logger,
                                                     fixed_param_names=self._fixed_param_names,
                                                     grad_req=grad_req,
                                                     state_names=self._state_names)
        # self._total_exec_bytes = self._exec_group._total_exec_bytes
        if shared_module is not None:
            self.params_initialized = True
            self._arg_params = shared_module._arg_params
            self._aux_params = shared_module._aux_params
        elif self.params_initialized:
            # if the parameters are already initialized, we are re-binding
            # so automatically copy the already initialized params
            self._exec_group.set_params(self._arg_params, self._aux_params)
        else:
            assert self._arg_params is None and self._aux_params is None
            param_arrays = [
                nd.zeros(x[0].shape, dtype=x[0].dtype)
                for x in self._exec_group.param_arrays
            ]
            self._arg_params = {name:arr for name, arr in zip(self._param_names, param_arrays)}

            aux_arrays = [
                nd.zeros(x[0].shape, dtype=x[0].dtype)
                for x in self._exec_group.aux_arrays
            ]
            self._aux_params = {name:arr for name, arr in zip(self._aux_names, aux_arrays)}

        if shared_module is not None and shared_module.optimizer_initialized:
            self.borrow_optimizer(shared_module)
Пример #5
0
def bind(modQ,
         data_shapes,
         label_shapes=None,
         for_training=True,
         inputs_need_grad=False,
         force_rebind=False,
         shared_module=None,
         grad_req='write'):
    if force_rebind:
        modQ._reset_bind()

    if modQ.binded:
        modQ.logger.warning('Already binded, ignoring bind()')
        return

    modQ.for_training = for_training
    modQ.inputs_need_grad = inputs_need_grad
    modQ.binded = True
    modQ._grad_req = grad_req

    if not for_training:
        assert not inputs_need_grad
    else:
        pass
        # this is not True, as some module might not contains a loss function
        # that consumes the labels
        # assert label_shapes is not None

    modQ._data_shapes, modQ._label_shapes = _parse_data_desc(
        modQ.data_names, modQ.label_names, data_shapes, label_shapes)

    if shared_module is not None:
        assert isinstance(shared_module, Module) and \
               shared_module.binded and shared_module.params_initialized
        shared_group = shared_module._exec_group
    else:
        shared_group = None

    modQ._exec_group = DataParallelExecutorGroup(
        modQ._symbol,
        modQ._context,
        modQ._work_load_list,
        modQ._data_shapes,
        modQ._label_shapes,
        modQ._param_names,
        for_training,
        inputs_need_grad,
        shared_group,
        logger=modQ.logger,
        fixed_param_names=modQ._fixed_param_names,
        grad_req=grad_req,
        state_names=modQ._state_names)
    modQ._total_exec_bytes = modQ._exec_group._total_exec_bytes
    if shared_module is not None:
        modQ.params_initialized = True
        modQ._arg_params = shared_module._arg_params
        modQ._aux_params = shared_module._aux_params
    elif modQ.params_initialized:
        # if the parameters are already initialized, we are re-binding
        # so automatically copy the already initialized params
        modQ._exec_group.set_params(modQ._arg_params, modQ._aux_params)
    else:
        assert modQ._arg_params is None and modQ._aux_params is None
        param_arrays = [
            nd.zeros(x[0].shape, dtype=x[0].dtype, ctx=x[0][0].context)
            for x in modQ._exec_group.param_arrays
        ]
        modQ._arg_params = {
            name: arr
            for name, arr in zip(modQ._param_names, param_arrays)
        }

        aux_arrays = [
            nd.zeros(x[0].shape, dtype=x[0].dtype, ctx=x[0][0].context)
            for x in modQ._exec_group.aux_arrays
        ]
        modQ._aux_params = {
            name: arr
            for name, arr in zip(modQ._aux_names, aux_arrays)
        }

    if shared_module is not None and shared_module.optimizer_initialized:
        modQ.borrow_optimizer(shared_module)