def test_conversion(args, hf_model, gluon_model): logging.info('testing conversion...') # create dummy input batch_size = 6 src_length = 128 tgt_length = 8 vocab_size = hf_model.shared.weight.shape[0] src_data = np.random.randint(1, vocab_size, (batch_size, src_length)) src_valid_length = np.random.randint(src_length // 2, src_length, (batch_size, )) tgt_data = np.random.randint(1, vocab_size, (batch_size, tgt_length)) tgt_valid_length = np.random.randint(tgt_length // 2, tgt_length, (batch_size, )) enc_attn_mask = npx.arange_like(src_data, axis=-1) < src_valid_length.reshape(-1, 1) dec_attn_mask = npx.arange_like(tgt_data, axis=-1) < tgt_valid_length.reshape(-1, 1) # test T5Model forward pass hf_model.eval() # disable dropout hf_out = hf_model( input_ids=torch.from_numpy(src_data.asnumpy()), attention_mask=torch.from_numpy(enc_attn_mask.asnumpy()), decoder_input_ids=torch.from_numpy(tgt_data.asnumpy()), decoder_attention_mask=torch.from_numpy( dec_attn_mask.asnumpy()))['last_hidden_state'].detach().numpy() gl_out = gluon_model(src_data, src_valid_length, tgt_data, tgt_valid_length) for i in range(batch_size): assert np.allclose(hf_out[i, :tgt_valid_length[i].item(), :], gl_out[i, :tgt_valid_length[i].item(), :], 1E-3, 1E-3) logging.info('pass')
def _get_relative_position(self, hidden_states): query_position = np.expand_dims(npx.arange_like(hidden_states, axis=self.time_axis), axis=-1) mem_position = np.expand_dims(npx.arange_like(hidden_states, axis=self.time_axis), axis=0) relative_position = mem_position - query_position return relative_position.astype(np.int32)
def forward(self, x, layer_states): """ Parameters ---------- x - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) layer_states - layout = 'NT' Shape (2, batch_size, prev_len, C_in) - layout = 'TN' Shape (2, prev_len, batch_size, C_in) """ x = self.ln(x) if self._layout == 'NT': batch_axis, time_axis = 0, 1 prev_len = npx.shape_array(layer_states)[2] else: batch_axis, time_axis = 1, 0 prev_len = npx.shape_array(layer_states)[1] query, key, value = np.split(self.qkv(x), 3, axis=-1) if layer_states is not None: prev_key, prev_value = layer_states[0], layer_states[1] key = np.concatenate([prev_key, key], axis=time_axis) value = np.concatenate([prev_value, value], axis=time_axis) new_states = np.stack([key, value], axis=0) # gen mask query_pos = npx.arange_like(query, axis=time_axis) if prev_len is not None: query_pos = query_pos + prev_len key_pos = npx.arange_like(key, axis=time_axis) # (query_len, key_len) mask = (npx.reshape(key_pos, (1, -1)) <= npx.reshape(query_pos, (-1, 1))).astype( self._dtype) # broadcast to (batch_size, query_len, key_len) mask = npx.broadcast_like(np.expand_dims(mask, axis=0), query, lhs_axes=0, rhs_axes=batch_axis) query = npx.reshape(query, (-2, -2, self._num_heads, -1)) key = npx.reshape(key, (-2, -2, self._num_heads, -1)) value = npx.reshape(value, (-2, -2, self._num_heads, -1)) out, [_, attn_weight] = self.attention_cell(query, key, value, mask) out = self.out_proj(out) out = self.hidden_dropout(out) return out, new_states
def gen_rel_position(data, past_data=None, dtype=np.int32, layout='NT'): """Create a matrix of relative position for RelAttentionScoreCell. The relative position is defined as the index difference: `mem_i` - `query_j`. Note, though, that the implementation here makes sense in self-attention's setting, but not in cross-attention's. Hence, both `mem_i` and `query_j` are time indices from `data` (or, in incremental decoding's case, the concatenated sequence from the current stepwise `data` and the previous steps `past_data`). Parameters ---------- data The data. Under incremental decoding, seq_length = 1. - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) past_data This is only used under incremental decoding. Stacked data from previous steps. dtype Data type of the mask layout Layout of the data + past_data Returns ------- relative_position : Shape (query_length, mem_length) where query_length = mem_length = seq_length """ time_axis = 1 if layout == 'NT' else 0 if past_data is None: position = npx.arange_like(data, axis=time_axis) else: # for incremental decoding only, where past data is of the shape: # NT(NTK): (B, L_seq, num_heads, n_kv) -> (B, L_seq, inner_dim) # TN(TNK): (L_seq, B, num_heads, n_kv) -> (L_seq, B, inner_dim) past_data = npx.reshape(past_data, (-2, -2, -5)) position = npx.arange_like( np.concatenate([past_data, data], axis=time_axis), axis=time_axis ) query_position = np.expand_dims(position, axis=-1) mem_position = np.expand_dims(position, axis=0) relative_position = mem_position - query_position return relative_position.astype(np.int32) # shape (L_seq, L_seq)
def test_arange_like(): A = np.zeros((INT_OVERFLOW, 2)) A.attach_grad() with mx.autograd.record(): B = npx.arange_like(A) assert B.shape == (INT_OVERFLOW, 2) assert B[100][0] == 200 B.backward() assert A.grad.shape == (INT_OVERFLOW, 2) assert A.grad[0][0] == 0
def forward(self, x: np.ndarray) -> np.ndarray: # Shape: (length, 1) length_array = npx.arange_like(x, axis=1) # matrix with lower triangle and main diagonal set to 0, upper triangle set to 1 # Shape: (length, length) bias = npx.broadcast_greater(np.expand_dims(length_array, axis=0), np.expand_dims(length_array, axis=1)) bias = bias * -C.LARGE_VALUES[self._dtype] bias = np.expand_dims(bias, axis=0) return npx.stop_gradient(bias)
def _get_relative_position(self, hidden_states, mem_states=None, past_key_value=None): if past_key_value is None: query_position = np.expand_dims(npx.arange_like( hidden_states, axis=self.time_axis), axis=-1) else: # for incremental decoding only, where past key and past value are of shape # NT(NTK): (B, L_seq, num_heads, n_kv); TN(TNK): (L_seq, B, num_heads, n_kv) query_position = npx.arange_like(np.concatenate( [hidden_states, past_key_value[0]], axis=self.time_axis), axis=self.time_axis) query_position = np.expand_dims(query_position, axis=-1) mem_position = np.expand_dims(npx.arange_like( hidden_states if mem_states is None else mem_states, axis=self.time_axis), axis=0) relative_position = mem_position - query_position return relative_position.astype(np.int32)
def init_state_from_encoder( self, encoder_outputs: np.ndarray, encoder_valid_length: Optional[np.ndarray] = None, target_embed: Optional[np.ndarray] = None) -> List[np.ndarray]: """ Returns the initial states given encoder output. States for teacher-forced training are encoder outputs and a valid length mask for encoder outputs. At inference, this method returns the following state tuple: valid length bias, step state, [projected encoder attention keys, projected encoder attention values] * num_layers, [autoregressive state dummies] * num_layers. :param encoder_outputs: Encoder outputs. Shape: (batch, source_length, encoder_dim). :param encoder_valid_length: Valid lengths of encoder outputs. Shape: (batch,). :param target_embed: Target-side embedding layer output. Shape: (batch, target_length, target_embedding_dim). :return: Initial states. """ if target_embed is None: # Inference: initial step = 0. Shape: (batch_size, 1) steps = np.expand_dims(np.zeros_like(encoder_valid_length), axis=1) else: # Training: steps up to target length. Shape: (1, target_length) steps = np.expand_dims(npx.arange_like(target_embed, axis=1), axis=0) if self.inference_only: # Encoder projection caching, therefore we don't pass the encoder_outputs states = [steps, encoder_valid_length] for layer in self.layers: enc_att_kv = layer.enc_attention.ff_kv(encoder_outputs) states.append(np.transpose(enc_att_kv, axes=(1, 0, 2))) else: # NO encoder projection caching states = [ steps, np.transpose(encoder_outputs, axes=(1, 0, 2)), encoder_valid_length ] _batch_size = encoder_outputs.shape[0] _ctx = encoder_outputs.ctx _dtype = encoder_outputs.dtype dummy_autoregr_states = [ np.zeros(layer.get_states_shape(_batch_size), ctx=_ctx, dtype=_dtype) for layer in self.layers for _ in range(layer.num_state_tensors) ] states += dummy_autoregr_states return states
def get_initial_embedding(self, inputs, token_types=None): """Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The type of tokens. If None, it will be initialized as all zero. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) Returns ------- embedding The initial embedding that will be fed into the encoder - layout = 'NT' Shape (batch_size, seq_length, C_embed) - layout = 'TN' Shape (seq_length, batch_size, C_embed) """ if self.layout == 'NT': time_axis, batch_axis = 1, 0 else: time_axis, batch_axis = 0, 1 embedding = self.word_embed(inputs) if token_types is None: token_types = np.zeros_like(inputs) type_embedding = self.token_type_embed(token_types) embedding = embedding + type_embedding if self.pos_embed_type is not None: positional_embedding = self.token_pos_embed(npx.arange_like(inputs, axis=time_axis)) positional_embedding = np.expand_dims(positional_embedding, axis=batch_axis) embedding = embedding + positional_embedding # Extra layer normalization plus dropout embedding = self.embed_layer_norm(embedding) embedding = self.embed_dropout(embedding) return embedding
def add_vectors_by_position(data, increment, positions): """Scatter each batch with the given positions. data[i, positions[i, j], ...] += increment[i, j, ...] Parameters ---------- F data Input tensor of the array to be updated. Shape (batch_size, seq_length, ...) increment Input tensor of token ids Shape (batch_size, num_disp_position, ...) positions Input tensor of the positions. Shape (batch_size, num_disp_position). For each sample in the batch, the values in this tensor must not exceed the length of the sequence. Returns ------- out The updated result. Shape (batch_size, seq_length, ...) """ # Here, we use index_add to disperse the output from data: # Need to compute # out[i, masked_position[i, j], :] = in[i, j, :] # Thus, construct an indices with shape [2, batch_size * num_masked_position], where # indices[0, i * num_masked_position + j] = i # indices[1, i * num_masked_position + j] = masked_position[i, j] # And convert data to the shape of the (batch_size * num_masked_position, ) # Then, out = npx.index_add(data, indices, increment) positions = positions.astype(np.int32) # batch_idx.shape = (batch_size, 1) as [[0], [1], [2], ...] batch_idx = np.expand_dims(npx.arange_like(positions, axis=0), axis=1).astype(np.int32) batch_idx = batch_idx + np.zeros_like(positions) indices = np.stack([batch_idx.reshape((-1, )), positions.reshape((-1, ))]) out = npx.index_add(data, indices, npx.reshape(increment, (-5, -4))) return out
def select_vectors_by_position(data, positions): """Select each batch with the given positions. Once advanced indexing can be hybridized, we can revise the implementation. out[i, j, ...] = data[i, positions[i, j], ...] Parameters ---------- data Input tensor of contextualized token embeddings Shape (batch_size, seq_length, ...) positions Input tensor of the positions. Shape (batch_size, num_sel_positions). For each sample in the batch, the values in this tensor must not exceed the length of the sequence. Returns ------- out The selection result. Shape (batch_size, num_sel_positions, ...) """ # Here, we use gather_nd to select the output from data: # Need to compute # out[i, j, :] = in[i, masked_position[i, j], :] # Thus, construct a indices with shape [2, batch_size, num_masked_position], where # indices[0, i, j] = i # indices[1, i, j] = masked_position[i, j] # Then, out = gather_nd(in, indices) positions = positions.astype(np.int32) # batch_idx.shape = (batch_size, 1) as [[0], [1], [2], ...] batch_idx = np.expand_dims(npx.arange_like(positions, axis=0), axis=1).astype(np.int32) batch_idx = batch_idx + np.zeros_like(positions) indices = np.stack([batch_idx, positions]) # TODO(sxjscience) We can revise the implementation to advanced indexing # once the bug in MXNet is solved: # https://github.com/apache/incubator-mxnet/issues/18919 out = npx.gather_nd(data, indices) return out
def update_vectors_by_position(data, val, positions): """ Update each batch with the given positions. Considered as a reversed process of "select_vectors_by_position", this is an operator similar to "add_vectors_by_position" that updates the results instead of adding. data[i, positions[i, j], :] = val[i, j, :] Parameters ---------- F data: Input tensor of the array to be updated. Shape (batch_size, seq_length) val Input tensor of token ids Shape (batch_size, num_disp_position) positions Input tensor of the positions. Shape (batch_size, num_disp_position). For each sample in the batch, the values in this tensor must not exceed the length of the sequence. Returns ------- out The updated result. Shape (batch_size, seq_length) """ positions = positions.astype(np.int32) # batch_idx.shape = (batch_size, 1) as [[0], [1], [2], ...] batch_idx = np.expand_dims(npx.arange_like(positions, axis=0), axis=1).astype(np.int32) batch_idx = batch_idx + np.zeros_like(positions) indices = np.stack([batch_idx.reshape((-1, )), positions.reshape((-1, ))]) out = npx.index_update(data, indices, npx.reshape(val, (-5, -4))) return out
def get_initial_embedding(self, inputs): """Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) Returns ------- embedding The initial embedding that will be fed into the encoder - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) """ if self._layout == 'NT': batch_axis, time_axis = 0, 1 else: batch_axis, time_axis = 1, 0 embedding = self.word_embed(inputs) if self.pos_embed_type: positional_embedding = self.pos_embed( npx.arange_like(inputs, axis=time_axis)) positional_embedding = np.expand_dims(positional_embedding, axis=batch_axis) embedding = embedding + positional_embedding if self.encoder_normalize_before: embedding = self.embed_ln(embedding) embedding = self.embed_dropout(embedding) return embedding
def get_initial_embedding(self, inputs, prev_len): """Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) prev_len The previous length. It will be a scalar. Returns ------- embedding - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) """ embedding = self._embed(inputs) if self._layout == 'NT': batch_axis, time_axis = 0, 1 else: batch_axis, time_axis = 1, 0 if self._pos_embed_type is not None: pos = npx.arange_like(inputs, axis=time_axis) if prev_len is not None: pos = pos + prev_len positional_embedding = self._pos_embed(pos) positional_embedding = np.expand_dims(positional_embedding, axis=batch_axis) embedding = embedding + positional_embedding embedding = self._embed_dropout(embedding) return embedding
def get_initial_embedding(self, inputs, token_types=None): """Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- F inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) If None, it will be initialized as all zero Returns ------- embedding The initial embedding that will be fed into the encoder """ if self._layout == 'NT': batch_axis, time_axis = 0, 1 elif self._layout == 'TN': batch_axis, time_axis = 1, 0 else: raise NotImplementedError word_embedding = self.word_embed(inputs) if self.trigram_embed: if self._layout == 'NT': word_embedding = np.concatenate([ np.pad(word_embedding[:, 1:], ((0, 0), (0, 1), (0, 0))), word_embedding, np.pad(word_embedding[:, :-1], ((0, 0), (1, 0), (0, 0))) ], axis=-1) elif self._layout == 'TN': word_embedding = np.concatenate([ np.pad(word_embedding[1:, :], ((0, 1), (0, 0), (0, 0))), word_embedding, np.pad(word_embedding[:-1, :], ((1, 0), (0, 0), (0, 0))) ], axis=-1) else: raise NotImplementedError # Projecting the embedding into units only for word embedding if self.trigram_embed or self.embed_size != self.units: word_embedding = self.embed_factorized_proj(word_embedding) if token_types is None: token_types = np.zeros_like(inputs) type_embedding = self.token_type_embed(token_types) embedding = word_embedding + type_embedding if self.pos_embed_type is not None: positional_embedding =\ self.token_pos_embed(npx.arange_like(embedding, axis=time_axis)) positional_embedding = np.expand_dims(positional_embedding, axis=batch_axis) embedding = embedding + positional_embedding # Extra layer normalization plus dropout embedding = self.embed_layer_norm(embedding) embedding = self.embed_dropout(embedding) return embedding
def forward(self, rel_positions, query=None): """Forward function Parameters ---------- rel_positions The relative shifts. Shape (query_length, mem_length). Each element represents the shift between the :math:`i-th` element of query and the :math:`j-th` element of memory. query The query for computing the relative scores. The shape depends on the layout. If we use T5 attention, the query will not be used. Returns ------- rel_scores The relative attention scores Can have shape (batch_size, num_heads, query_length, mem_length) or (num_heads, query_length, mem_length) """ if self._method == 'transformer_xl' or self._method == 'shaw': assert query is not None, 'Must specify query if method={}'.format(self._method) if self._bidirectional: if self._max_distance is not None: rel_positions = np.clip(rel_positions, a_min=-self._max_distance, a_max=self._max_distance) else: if self._max_distance is not None: rel_positions = np.clip(rel_positions, a_min=0, a_max=self._max_distance) # uniq_rel.shape = (#uniq,), rev_index.shape = (L_q, L_m) uniq_rel, rev_index = np.unique(rel_positions, return_inverse=True) uniq_rel_pos_embed = self._rel_pos_embed(uniq_rel) if self._method == 'transformer_xl': uniq_rel_pos_embed = self._rel_proj(self._dropout_layer(uniq_rel_pos_embed)) # Shape (#uniq, K, C_q) uniq_rel_pos_embed = npx.reshape(uniq_rel_pos_embed, (-2, self._num_heads, self._head_query_units)) # Calculate the dot-product between query and the relative positional embeddings. # After the calculation, rel_score.shape = (L_q, #uniq, N, K) if self._layout == 'NKT': # query_for_rel: (N, K, L_q, C_q) if self._use_einsum: rel_score = np.einsum('bnid,jnd->ijbn', query, uniq_rel_pos_embed) else: rel_score = np.transpose( np.matmul(query, np.transpose(uniq_rel_pos_embed, (1, 2, 0))), (2, 3, 0, 1) ) elif self._layout == 'NTK': # query_for_rel: (N, L_q, K, C_q) if self._use_einsum: rel_score = np.einsum('bind,jnd->ijbn', query, uniq_rel_pos_embed) else: rel_score = np.transpose( np.matmul(np.swapaxes(query, 1, 2), np.transpose(uniq_rel_pos_embed, (1, 2, 0))), (2, 3, 0, 1) ) elif self._layout == 'TNK': # query_for_rel: (L_q, N, K, C_q) if self._use_einsum: rel_score = np.einsum('ibnd,jnd->ijbn', query, uniq_rel_pos_embed) else: rel_score = np.transpose( np.matmul(np.transpose(query, (1, 2, 0, 3)), np.transpose(uniq_rel_pos_embed, (1, 2, 0))), (2, 3, 0, 1) ) else: raise NotImplementedError # We use gather_nd to select the elements # TODO(sxjscience) Use advanced indexing once available rev_index = npx.reshape_like(rev_index, rel_positions).astype(np.int32) query_idx = np.expand_dims(npx.arange_like(rel_positions, axis=0).astype(np.int32), axis=-1) + np.zeros_like(rev_index) rel_score = npx.gather_nd(rel_score, np.stack([query_idx, rev_index])) rel_score = np.transpose(rel_score, (2, 3, 0, 1)) elif self._method == 't5': # shape is (K, L_q, L_m) rel_score = self._rel_pos_embed(rel_positions).transpose((2, 0, 1)) else: raise NotImplementedError return rel_score
def gen_self_attn_mask(data, valid_length=None, dtype: type = np.float32, attn_type: str = 'full', layout: str = 'NT'): """Generate the mask used for the encoder, i.e, self-attention. In our implementation, 1 --> not masked, 0 --> masked Let's consider the data with two samples: .. code-block:: none data = [['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP' ], ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>']] valid_length = [8, 6] - attn_type = 'causal' Each token will attend to itself + the tokens before. It will not attend to tokens in the future. For our example, the mask of the first sample is .. code-block:: none ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 0, 0, 0, 0, 0, 0, 0 'can': 1, 1, 0, 0, 0, 0, 0, 0 'now': 1, 1, 1, 0, 0, 0, 0, 0 'use': 1, 1, 1, 1, 0, 0, 0, 0 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 1, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 0 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 The mask of the second sample is .. code-block:: none ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>'] 'May': 1, 0, 0, 0, 0, 0, 0, 0 'the': 1, 1, 0, 0, 0, 0, 0, 0 'force': 1, 1, 1, 0, 0, 0, 0, 0 'be': 1, 1, 1, 1, 0, 0, 0, 0 'with': 1, 1, 1, 1, 1, 0, 0, 0 'you': 1, 1, 1, 1, 1, 1, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 - attn_type = 'full' Each token will attend to both the tokens before and in the future For our example, the mask of the first sample is .. code-block:: none ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 1, 1, 1, 1, 1, 1, 1 'can': 1, 1, 1, 1, 1, 1, 1, 1 'now': 1, 1, 1, 1, 1, 1, 1, 1 'use': 1, 1, 1, 1, 1, 1, 1, 1 'numpy': 1, 1, 1, 1, 1, 1, 1, 1 'in': 1, 1, 1, 1, 1, 1, 1, 1 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 1 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 The mask of the second sample is .. code-block:: none ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>'] 'May': 1, 1, 1, 1, 1, 1, 0, 0 'the': 1, 1, 1, 1, 1, 1, 0, 0 'force': 1, 1, 1, 1, 1, 1, 0, 0 'be': 1, 1, 1, 1, 1, 1, 0, 0 'with': 1, 1, 1, 1, 1, 1, 0, 0 'you': 1, 1, 1, 1, 1, 1, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 Parameters ---------- data The data. - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length Shape (batch_size,) dtype Data type of the mask attn_type Can be 'full' or 'causal' layout The layout of the data Returns ------- mask Shape (batch_size, seq_length, seq_length) """ if layout == 'NT': batch_axis, time_axis = 0, 1 elif layout == 'TN': batch_axis, time_axis = 1, 0 else: raise NotImplementedError('Unsupported layout={}'.format(layout)) if attn_type == 'full': if valid_length is not None: valid_length = valid_length.astype(dtype) steps = npx.arange_like(data, axis=time_axis) # (seq_length,) mask1 = (npx.reshape(steps, (1, 1, -1)) < npx.reshape(valid_length, (-2, 1, 1))) mask2 = (npx.reshape(steps, (1, -1, 1)) < npx.reshape(valid_length, (-2, 1, 1))) mask = mask1 * mask2 else: # TODO(sxjscience) optimize seq_len_ones = np.ones_like(npx.arange_like(data, axis=time_axis)) # (seq_length,) batch_ones = np.ones_like(npx.arange_like(data, axis=batch_axis)) # (batch_size,) mask = batch_ones.reshape((-1, 1, 1)) * seq_len_ones.reshape((1, -1, 1))\ * seq_len_ones.reshape((1, 1, -1)) elif attn_type == 'causal': steps = npx.arange_like(data, axis=time_axis) # mask: (seq_length, seq_length) # batch_mask: (batch_size, seq_length) mask = (np.expand_dims(steps, axis=0) <= np.expand_dims(steps, axis=1)).astype(dtype) if valid_length is not None: valid_length = valid_length.astype(dtype) batch_mask = (np.expand_dims(steps, axis=0) < np.expand_dims(valid_length, axis=-1)).astype(dtype) mask = mask * np.expand_dims(batch_mask, axis=-1) else: batch_ones = np.ones_like(npx.arange_like(data, axis=batch_axis), dtype=dtype) # (batch_size,) mask = mask * batch_ones.reshape((-1, 1, 1)) else: raise NotImplementedError return mask.astype(np.bool)
def gen_mem_attn_mask(mem, mem_valid_length, data, data_valid_length=None, dtype=np.float32, layout: str = 'NT'): """Generate the mask used for the decoder. All query slots are attended to the memory slots. In our implementation, 1 --> not masked, 0 --> masked Let's consider the data + mem with a batch of two samples: .. code-block:: none mem = [['I', 'can', 'now', 'use'], ['May', 'the', 'force', '<PAD>']] mem_valid_length = [4, 3] data = [['numpy', 'in', 'Gluon@@', 'NLP' ], ['be', 'with', 'you', '<PAD>']] data_valid_length = [4, 3] For our example, the mask of the first sample is .. code-block:: none ['I', 'can', 'now', 'use'] 'numpy': 1, 1, 1, 1 'in': 1, 1, 1, 1 'Gluon@@': 1, 1, 1, 1 'NLP': 1, 1, 1, 1 The mask of the second sample is .. code-block:: none ['be', 'with', 'you', '<PAD>'] 'May': 1, 1, 1, 0 'the': 1, 1, 1, 0 'force': 1, 1, 1, 0 '<PAD>': 0, 0, 0, 0 Parameters ---------- mem - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length : Shape (batch_size,) data - layout = 'NT' Shape (batch_size, query_length, C_data) - layout = 'TN' Shape (query_length, batch_size, C_data) data_valid_length : Shape (batch_size,) dtype Data type of the mask layout Layout of the data + mem tensor Returns ------- mask : Shape (batch_size, query_length, mem_length) """ if layout == 'NT': batch_axis, time_axis = 0, 1 elif layout == 'TN': batch_axis, time_axis = 1, 0 else: raise NotImplementedError('Unsupported layout={}'.format(layout)) mem_valid_length = mem_valid_length.astype(dtype) mem_steps = npx.arange_like(mem, axis=time_axis) # (mem_length,) data_steps = npx.arange_like(data, axis=time_axis) # (query_length,) mem_mask = (npx.reshape(mem_steps, (1, 1, -1)) < npx.reshape(mem_valid_length, (-2, 1, 1))).astype(dtype) # (B, 1, mem_length) if data_valid_length is not None: data_valid_length = data_valid_length.astype(dtype) data_mask = (npx.reshape(data_steps, (1, -1, 1)) < npx.reshape(data_valid_length, (-2, 1, 1))).astype(dtype) # (B, query_length, 1) mask = mem_mask * data_mask else: query_length_ones = np.ones_like(data_steps) mask = query_length_ones.reshape((1, -1, 1)) * mem_mask return mask.astype(np.bool)