def get_noised_result(adv_imgs,
                      ori_imgs,
                      perturbation_ratio=0.25,
                      noise_level=10):

    # imgs_test = np.load('save_for_load/imgs_test.npy')
    # target_img_mat = np.load('save_for_load/target_imgs.npy')
    random_noise = np.random.randint(-noise_level, noise_level + 1,
                                     adv_imgs.shape).astype(float)
    adv_imgs_noised = np.stack(
        [(adv_imgs[i] - ori_imgs[i]) * perturbation_ratio + ori_imgs[i]
         for i in range(i_max)]) + random_noise / 255
    # adv_imgs_noised = adv_imgs

    X = Variable(torch.Tensor(adv_imgs_noised)).cuda()
    noised_img_num_result = get_img_num_by_class_from_img_batch(X,
                                                                model1,
                                                                code,
                                                                multi_label,
                                                                threshold=5,
                                                                batch_size=16)
    label_targeted = np.zeros([i_max, j_max])
    for i in range(i_max):
        j_index_set = j_index_matrix[int(
            test_true_label_y[i_index_set[i]])].astype(int)
        label_targeted_i = np.array(
            [multi_label[j_index_set[j]] for j in range(j_max)])
        label_targeted[i] = label_targeted_i
    # retrieval_result is a i_max*j_max matrix, which contains the number of targeted imgs of each input images.
    noised_adv_white_retrieval_result = get_targeted_from_all_class(
        noised_img_num_result, label_targeted)
    return noised_adv_white_retrieval_result
def get_noised_result(model1,
                      adv_imgs,
                      ori_imgs,
                      perturbation_ratio=0.25,
                      noise_level=10,
                      is_orthogonal=False,
                      noise_distribution='uniform'):
    # directly copied from myExpGetAdvVulnerable.py
    # imgs_test = np.load('save_for_load/imgs_test.npy')
    # target_img_mat = np.load('save_for_load/target_imgs.npy')
    if not is_orthogonal:
        if noise_distribution == 'uniform':
            random_noise = np.random.randint(-noise_level, noise_level + 1,
                                             adv_imgs.shape).astype(float)
        elif noise_distribution == 'Gaussian':
            # using 3-pi to define the max value of the noise
            random_noise = np.random.normal(0,
                                            noise_level / 3,
                                            size=adv_imgs.shape).astype(float)
            random_noise = np.clip(random_noise, -noise_level, noise_level)
    else:
        if noise_level == 0:
            random_noise = np.random.randint(-noise_level, noise_level + 1,
                                             adv_imgs.shape).astype(float)
        # Get the orthogonal projection of random noise and amplify it to designated number
        else:
            random_noise = get_random_noise_orthogonal(adv_imgs, ori_imgs,
                                                       noise_distribution)
            random_noise = np.clip(random_noise, -noise_level * 3,
                                   noise_level * 3)
            random_noise /= random_noise.max()
            random_noise = np.clip(random_noise, -random_noise.max(),
                                   random_noise.max())
            random_noise *= noise_level
    print("Random Noise Real Range:[%f, %f]" %
          (random_noise.min(), random_noise.max()))
    adv_imgs_noised = np.stack(
        [(adv_imgs[i] - ori_imgs[i]) * perturbation_ratio + ori_imgs[i]
         for i in range(i_max)]) + random_noise / 255
    # adv_imgs_noised = adv_imgs

    X = Variable(torch.Tensor(adv_imgs_noised)).cuda()
    noised_img_num_result = get_img_num_by_class_from_img_batch(X,
                                                                model1,
                                                                code,
                                                                multi_label,
                                                                threshold=5,
                                                                batch_size=16)
    label_targeted = np.zeros([i_max, j_max])
    for i in range(i_max):
        j_index_set = j_index_matrix[int(
            test_true_label_y[i_index_set[i]])].astype(int)
        label_targeted_i = np.array(
            [multi_label[j_index_set[j]] for j in range(j_max)])
        label_targeted[i] = label_targeted_i
    # retrieval_result is a i_max*j_max matrix, which contains the number of targeted imgs of each input images.
    noised_adv_white_retrieval_result = get_targeted_from_all_class(
        noised_img_num_result, label_targeted)
    return noised_adv_white_retrieval_result
def main_func():

    from publicFunctions import load_net_inputs, load_net_params, load_dset_params
    npy_name = '/%s_imgs_step%1.1f_linf%d_%dx%d_%s.npy' % (adv_method, step, linf, i_max, j_max, dis_method)
    npy_path = 'save_for_load/' + net1 + npy_name
    path_white_test_dis_npy = 'save_for_load/distanceADVRetrieval/test_dis_%s.npy'%(net1)
    path_black_test_dis_npy = 'save_for_load/distanceADVRetrieval/test_dis_%s.npy'%(net2)
    dset_test, dset_database = load_dset_params(job_dataset)
    model1, snapshot_path, query_path, database_path = load_net_params(net1)
    tmp = np.load(database_path)
    _, code, multi_label = tmp['arr_0'], tmp['arr_1'], tmp['arr_2']
    test_dis_white, test_dis_black = get_test_dis(path_white_test_dis_npy, path_black_test_dis_npy)
    test_true_id_x, test_true_label_y = choose_index_by_dis_method(dis_method, test_dis_white, test_dis_black,
                                                                    max_dis=18, min_dis=12)
    id_size = test_true_id_x.shape[0]
    print('id size:',id_size)
    i_index_set = np.arange(0, id_size, id_size / (i_max))[:i_max]

    inputs_ori_tensor = torch.stack([dset_test[test_true_id_x[i_index_set[i]]][0] for i in range(i_max)])
    j_index_matrix = get_unique_index(code, multi_label, j_max)

    adv_imgs = np.load(npy_path)
    ori_imgs = inputs_ori_tensor.cpu().numpy()
    # imgs_test = np.load('save_for_load/imgs_test.npy')
    # target_img_mat = np.load('save_for_load/target_imgs.npy')
    target_img_mat = get_target_imgs(j_index_matrix, test_true_label_y, i_index_set, dset_database)

    from myRetrieval import get_img_num_by_class_from_img_batch, get_targeted_from_all_class
    inputs_targets = Variable(torch.Tensor(target_img_mat).cuda(), requires_grad=True)
    img_num_by_class_target = get_img_num_by_class_from_img_batch(inputs_targets, model1, code, multi_label,
                                                                  threshold=5, batch_size=16)
    target_targetedNum_mat = np.zeros([i_max, j_max])
    for i in range(i_max):
        j_index_set = j_index_matrix[int(test_true_label_y[i_index_set[i]])].astype(int)
        label_targeted = np.array([multi_label[j_index_set[j]] for j in range(j_max)])
        img_num_target_targeted = get_targeted_from_all_class(img_num_by_class_target[i], label_targeted)
        target_targetedNum_mat[i] = img_num_target_targeted

    target_targeted_retrieval_num_path = './save_for_load/%s/target_targetedRetrievalNum_%s_%s.npy' % (net1, adv_method, dis_method)
    np.save(target_targeted_retrieval_num_path, target_targetedNum_mat)

    '''
    for i in range(i_max):
        for j in range(j_max):
            j_index_set = j_index_matrix[int(test_true_label_y[i_index_set[i]])].astype(int)
            target_img = target_img_mat[i, j]
    #target_result = get_target_retrival_result(model1, )
    
    i, j = 3, 9
    ori_img = ori_imgs[i]
    adv_img = adv_imgs[i,j]
    j_index_set = j_index_matrix[int(test_true_label_y[i_index_set[i]])].astype(int)
    label_targeted = np.array([database_label[j_index_set[j]] for j in range(j_max)])
    target_label =  label_targeted[j]
    perturbation_ratio_bound = estimate_subspace_size(adv_img, ori_img, model1, target_label, code, database_label)
    '''

    return
def func_single_RRN(model,
                    adv_img,
                    source_img_index,
                    radius_candidates_array,
                    candidates_size=8,
                    N=10):
    # NOTE: This file is not debugged. To be debugged when the computational resource is available

    # N is the minimal numbers of retrieval results to make a query to be considered as an adv
    # N = 10 # N is pre-set

    radius_array_size = len(radius_candidates_array)
    label_targeted = np.zeros([i_max, j_max])
    for i in range(i_max):
        j_index_set = j_index_matrix[int(
            test_true_label_y[i_index_set[i]])].astype(int)
        label_targeted_i = np.array(
            [multi_label[j_index_set[j]] for j in range(j_max)])
        label_targeted[i] = label_targeted_i

    for i_radius in range(radius_array_size):
        noise_level = radius_candidates_array[i_radius]
        random_noise = np.random.randint(
            -noise_level, noise_level + 1,
            np.concatenate((candidates_size, adv_img.shape),
                           axis=None)).astype(float)
        adv_imgs_noised = adv_img + random_noise / 255

        X = Variable(torch.Tensor(adv_imgs_noised)).cuda()
        noised_img_num_result = get_img_num_by_class_from_img_batch(
            X, model, code, multi_label, threshold=5, batch_size=16)

        # bugs over the following code
        label_noised = np.zeros([candidates_size])
        label_noised = label_targeted[source_img_index][:candidates_size]
        noised_adv_white_retrieval_result = get_targeted_from_all_class(
            noised_img_num_result, label_noised)
        index_noised_gtN = noised_adv_white_retrieval_result > N

        print("Pass Number SUM:", index_noised_gtN.sum())
        if index_noised_gtN.sum() == candidates_size:
            print("Stop at:", radius_candidates_array[i_radius])
            return radius_candidates_array[i_radius]
        else:
            print("Continue at:", radius_candidates_array[i_radius])

    if i_radius == radius_array_size:
        return 0  # default radius
Пример #5
0
def func_eval_adv_imgs(adv_imgs, model, code, test_true_label_y):
    # use it to evaluate the adv_imgs
    inputs_adv = Variable(torch.Tensor(adv_imgs).cuda())

    better_img_num_result = get_img_num_by_class_from_img_batch(inputs_adv, model, code, multi_label2,
                                                                threshold=threshold, batch_size=8)
    label_targeted = np.zeros([i_max, j_max])

    for i in range(i_max):
        j_index_set = j_index_matrix[int(test_true_label_y[i_index_set[i]])].astype(int)
        label_targeted_i = np.array([multi_label2[j_index_set[j]] for j in range(j_max)])
        label_targeted[i] = label_targeted_i

    better_adv_black_retrieval_result = get_targeted_from_all_class(better_img_num_result, label_targeted)

    return better_adv_black_retrieval_result
def get_adv_black_retrieval_result(net1, net2, adv_method, step, linf, i_max, j_max, dis_method, job_dataset='', threshold=5, batch_size=8, allowLoad=True):
    # save/load and return  the black box retrieval result for specific adv_imgs
    # the adv_imgs is loaded in this function
    path_blackTargetedNum_folder = 'save_for_load/distanceADVRetrieval/%s'%(adv_method)
    path_blackTargetedNum = path_blackTargetedNum_folder + '/targetedNum_white_%s_black_%s_step%1.1f_linf%d_%s.npy' % (
        net1, net2, step, linf, dis_method)
    if not os.path.exists(path_blackTargetedNum_folder):
        os.makedirs(path_blackTargetedNum_folder)
    if os.path.exists(path_blackTargetedNum) and allowLoad:
        adv_black_retrieval_result = np.load(path_blackTargetedNum)
        print('load path_blackTargetedNum in:', path_blackTargetedNum)
        return adv_black_retrieval_result

    adv_black_retrieval_result = np.zeros([i_max, j_max])
    npy_name = '/%s_imgs_step%1.1f_linf%d_%dx%d_%s.npy' % (adv_method, step, linf, i_max, j_max, dis_method)
    npy_path = 'save_for_load/' + net1 + npy_name
    '''
    path_white_test_dis_npy = 'save_for_load/distanceADVRetrieval/test_dis_%s.npy' % (net1)
    path_black_test_dis_npy = 'save_for_load/distanceADVRetrieval/test_dis_%s.npy' % (net2)
    dset_test, dset_database = load_dset_params(job_dataset)
    model1, snapshot_path, query_path, database_path = load_net_params(net1)
    model2, snapshot_path2, query_path2, database_path2 = load_net_params(net2)
    tmp = np.load(database_path)
    _, code, multi_label = tmp['arr_0'], tmp['arr_1'], tmp['arr_2']
    tmp2 = np.load(database_path2)
    _, code2, multi_label2 = tmp2['arr_0'], tmp2['arr_1'], tmp2['arr_2']
    test_dis_white, test_dis_black = get_test_dis(path_white_test_dis_npy, path_black_test_dis_npy)
    test_true_id_x, test_true_label_y = choose_index_by_dis_method(dis_method, test_dis_white, test_dis_black,
                                                                   max_dis=18, min_dis=12)
    id_size = test_true_id_x.shape[0]
    print('id size:', id_size)
    i_index_set = np.arange(0, id_size, id_size / (i_max))[:i_max]

    inputs_ori_tensor = torch.stack([dset_test[test_true_id_x[i_index_set[i]]][0] for i in range(i_max)])
    j_index_matrix = get_unique_index(code, multi_label, j_max)
    '''
    hash_bit = 48
    from publicFunctions import NetworkSettings
    from myExpForPapers_nag import EXPSettings
    network_settings1 = NetworkSettings(job_dataset, hash_bit, net1, snapshot_iter=iters_list[net1], batch_size=16)
    network_settings2 = NetworkSettings(job_dataset, hash_bit, net2, snapshot_iter=iters_list[net2], batch_size=16)
    exp_settings = EXPSettings(net1, net2, dis_method, i_max, j_max, step=step, linf=linf)

    model2 = network_settings2.get_model()

    _, code, multi_label = network_settings1.get_out_code_label(part='database')
    _, code_test, multi_label_test = network_settings1.get_out_code_label(part='test')
    _, code2, multi_label2 = network_settings2.get_out_code_label(part='database')
    _, code_test2, _ = network_settings2.get_out_code_label(part='test')
    dset_loaders = network_settings1.get_dset_loaders()

    i_index_set, j_index_matrix = exp_settings.cal_index_set_matrix_white(code_test, code, multi_label)
    test_true_label_y = exp_settings.test_true_label_y

    dset_database = dset_loaders['database'].dataset

    print('load adv_imgs from:', npy_path)
    adv_imgs = np.load(npy_path)

    inputs_adv = Variable(torch.Tensor(adv_imgs).cuda())
    black_img_num_result = get_img_num_by_class_from_img_batch(inputs_adv, model2, code2, multi_label2,
                                                                     threshold=threshold, batch_size=batch_size)
    label_targeted = np.zeros([i_max, j_max])

    '''
    for i in range(i_max):
        #j_index_set = j_index_matrix[int(test_true_label_y[i_index_set[i]])].astype(int)
        #label_targeted = np.array([multi_label[j_index_set[j]] for j in range(j_max)])

        j_index_set = j_index_matrix[int(test_true_label_y[i_index_set[i]])].astype(int)
        label_targeted_i = np.array([multi_label[j_index_set[j]] for j in range(j_max)])
        label_targeted[i] = label_targeted_i
        img_num_black_targeted = get_targeted_from_all_class(black_img_num_result[i], label_targeted_i)
        #print(i, label_targeted_i)
        adv_black_retrieval_result[i] = img_num_black_targeted
    #adv_black_retrieval_result = get_targeted_from_all_class(black_img_num_result, label_targeted)
    '''
    for i in range(i_max):
        j_index_set = j_index_matrix[int(test_true_label_y[i_index_set[i]])].astype(int)
        label_targeted_i = np.array([multi_label[j_index_set[j]] for j in range(j_max)])
        label_targeted[i] = label_targeted_i

    adv_black_retrieval_result = get_targeted_from_all_class(black_img_num_result, label_targeted)

    np.save(path_blackTargetedNum, adv_black_retrieval_result)
    print('save blackTargetedNum file to:', path_blackTargetedNum)
    return adv_black_retrieval_result
def get_target_targetedRetrievalNum(net1, net2, adv_method, step, linf, i_max, j_max, dis_method, job_dataset='', allowLoad=True):
    # returns the targeted retrieval number of original targets imgs.
    # The result has no relation with the adv method
    target_targeted_retrieval_num_folder_path = './save_for_load/%s/'%(net1)
    target_targeted_retrieval_num_path = target_targeted_retrieval_num_folder_path+'/target_targetedRetrievalNum_%s.npy' % (
        dis_method)
    if not os.path.exists(target_targeted_retrieval_num_folder_path):
        os.makedirs(target_targeted_retrieval_num_folder_path)
    if os.path.exists(target_targeted_retrieval_num_path) and allowLoad:
        target_targetedNum_mat = np.load(target_targeted_retrieval_num_path)
        print('load target_targeted_retrieval_num_path in:', target_targeted_retrieval_num_path)
        return target_targetedNum_mat
    else:
        #npy_name = '/%s_imgs_step%1.1f_linf%d_%dx%d_%s.npy' % (adv_method, step, linf, i_max, j_max, dis_method)
        #npy_path = 'save_for_load/' + net1 + npy_name
        '''
        path_white_test_dis_npy = 'save_for_load/distanceADVRetrieval/test_dis_%s.npy'%(net1)
        path_black_test_dis_npy = 'save_for_load/distanceADVRetrieval/test_dis_%s.npy'%(net2)
        dset_test, dset_database = load_dset_params(job_dataset)
        model1, snapshot_path, query_path, database_path = load_net_params(net1)

        tmp = np.load(database_path)
        _, code, multi_label = tmp['arr_0'], tmp['arr_1'], tmp['arr_2']
        test_dis_white, test_dis_black = get_test_dis(path_white_test_dis_npy, path_black_test_dis_npy)
        test_true_id_x, test_true_label_y = choose_index_by_dis_method(dis_method, test_dis_white, test_dis_black,
                                                                        max_dis=18, min_dis=12)


        id_size = test_true_id_x.shape[0]
        print('id size:',id_size)
        i_index_set = np.arange(0, id_size, id_size / (i_max))[:i_max]

        #inputs_ori_tensor = torch.stack([dset_test[test_true_id_x[i_index_set[i]]][0] for i in range(i_max)])
        j_index_matrix = get_unique_index(code, multi_label, j_max)
        '''
        hash_bit = 48
        from publicFunctions import NetworkSettings
        from myExpForPapers_nag import EXPSettings
        network_settings1 = NetworkSettings(job_dataset, hash_bit, net1, snapshot_iter=iters_list[net1], batch_size=16)
        network_settings2 = NetworkSettings(job_dataset, hash_bit, net2, snapshot_iter=iters_list[net2], batch_size=16)
        exp_settings = EXPSettings(net1, net2, dis_method, i_max, j_max, step=step, linf=linf)

        model1 = network_settings1.get_model()
        _, code, multi_label = network_settings1.get_out_code_label(part='database')
        _, code_test, multi_label_test = network_settings1.get_out_code_label(part='test')
        _, code2, multi_label2 = network_settings2.get_out_code_label(part='database')
        _, code_test2, _ = network_settings2.get_out_code_label(part='test')
        dset_loaders = network_settings1.get_dset_loaders()

        i_index_set, j_index_matrix = exp_settings.cal_index_set_matrix_white(code_test, code, multi_label)
        test_true_label_y = exp_settings.test_true_label_y

        dset_database = dset_loaders['database'].dataset

        target_img_mat = get_target_imgs(j_index_matrix, test_true_label_y, i_index_set, dset_database)


        from myRetrieval import get_img_num_by_class_from_img_batch, get_targeted_from_all_class
        inputs_targets = Variable(torch.Tensor(target_img_mat).cuda(), requires_grad=True)

        img_num_by_class_target = get_img_num_by_class_from_img_batch(inputs_targets, model1, code, multi_label,
                                                                      threshold=5, batch_size=16)
        target_targetedNum_mat = np.zeros([i_max, j_max])
        for i in range(i_max):
            j_index_set = j_index_matrix[int(test_true_label_y[i_index_set[i]])].astype(int)
            label_targeted = np.array([multi_label[j_index_set[j]] for j in range(j_max)])
            img_num_target_targeted = get_targeted_from_all_class(img_num_by_class_target[i], label_targeted)
            #print(i, label_targeted)
            target_targetedNum_mat[i] = img_num_target_targeted
        np.save(target_targeted_retrieval_num_path, target_targetedNum_mat)
        print('save blackTargetedNum(target_targetedNum_mat) to: %s'%(target_targeted_retrieval_num_path))
        return target_targetedNum_mat
        np.save(path_ori_img, ori_img)
    inputs_test = torch.tensor(ori_img).cuda().float()
    from myRetrieval import get_img_num_by_class_from_img_batch, get_targeted_from_all_class

    wrapModel_black = WrapSimpleRetriSysClassifierThreshold(
        hash_retri_sys, aux_labels=aux_labels, threshold=retrieval_threshold)
    ori_labels = wrapModel_black(inputs_test).argmax(-1)
    labels_target = ori_labels.cpu().numpy() if not targeted else (
        ori_labels.cpu().numpy() + 1) % 100
    black_img_num_result = get_img_num_by_class_from_img_batch(inputs_test,
                                                               model,
                                                               code,
                                                               multi_label,
                                                               threshold=5,
                                                               batch_size=32)
    adv_black_retrieval_result = get_targeted_from_all_class(
        black_img_num_result, labels_target).astype(int)
    index_valid = adv_black_retrieval_result >= 10 if not targeted else adv_black_retrieval_result < 10

    #n_queries, x_adv = attackFlow.square_attack_preset_args(inputs_test[index_valid], labels_target=labels_target[index_valid], niters=200, eps=0.031, p_init=0.031, targeted=targeted)
    path_x_adv = tmp_exp_path + 'x_adv_%s_%f_targeted_%s.npy' % (
        net, pert_level, str(targeted))
    if os.path.exists(path_x_adv):
        x_adv = np.load(path_x_adv)
    else:
        n_queries, x_adv = attackFlow.square_attack_preset_args(
            inputs_test[index_valid],
            labels_target=labels_target[index_valid],
            niters=200,
            eps=pert_level,
            p_init=pert_level,
            targeted=targeted,
        index_close_white_class = np.argmin(query_avg_dis_white,
                                            axis=1)  # also the label
        query_avg_dis_white_closest = np.array([
            query_avg_dis_white[i, index_close_white_class[i]]
            for i in range(ad_sample_size)
        ])

        # see if the closet class samples are included in returns.
        # If none returns, called it 'safe'.
        # We choose K(ad_size) safe AD imgs with the smallest 'query_avg_dis_white_closest'
        # index_closest_safe is the index of size 32 in range(ad_sample_size) to select the ideal data
        img_num_by_class = get_query_result_num_by_class(query_code,
                                                         code,
                                                         multi_label,
                                                         threshold=5)
        img_num_target_targeted = get_targeted_from_all_class(
            img_num_by_class, index_close_white_class)

        index_safe_AD = img_num_target_targeted == 0
        index_safe_AD_by_position = np.arange(ad_sample_size)[index_safe_AD]

        index_close_white_class_safe = index_close_white_class[index_safe_AD]
        query_avg_dis_white_closet_safe = query_avg_dis_white_closest[
            index_safe_AD]
        index_closest_safe = index_safe_AD_by_position[np.argsort(
            query_avg_dis_white_closet_safe, ad_size)[:ad_size]]
        #index_closest_safe_AD = [index_closest_safe]

        # get the inputs_AD and label_target
        inputs_AD = inputs_AD_sample[index_closest_safe]
        label_target = index_close_white_class[index_closest_safe]
def func_enable_retrieval():
    # this is a function segment
    for i in range(i_max):
        print('id:%d' % (i))
        i_index = int(test_true_id_x[i_index_set[i]])
        inputs_ori = Variable(inputs_ori_tensor.cuda())[i].unsqueeze(0)
        inputs_adv = Variable(torch.Tensor(adv_imgs).cuda())[i].unsqueeze(0)
        j_index_set = j_index_matrix[int(
            test_true_label_y[i_index_set[i]])].astype(int)

        label_targeted = np.array(
            [multi_label[j_index_set[j]] for j in range(j_max)])
        label2_targeted = np.array(
            [multi_label2[j_index_set[j]] for j in range(j_max)])
        if not bSaveBlackTargetedNum:
            X = np.stack(
                [dset_database[j_index_set[j]][0] for j in range(j_max)])
            inputs_target = Variable(torch.Tensor(X).cuda(),
                                     requires_grad=True)

            # get the target's retrieval result fget_img_num_by_class_from_img_batchor each class on White and Black
            img_num_by_class_target = get_img_num_by_class_from_img_batch(
                inputs_target,
                model1,
                code,
                multi_label,
                threshold=threshold,
                batch_size=16)
            img_num_by_class_target_black = get_img_num_by_class_from_img_batch(
                inputs_target,
                model2,
                code2,
                multi_label2,
                threshold=threshold,
                batch_size=8)

            # get the adv's retrieval result for each class on White and Black
            img_num_by_class_adv = get_img_num_by_class_from_img_batch(
                inputs_adv,
                model1,
                code,
                multi_label,
                threshold=threshold,
                batch_size=16)
        img_num_by_class_adv_black = get_img_num_by_class_from_img_batch(
            inputs_adv,
            model2,
            code2,
            multi_label2,
            threshold=threshold,
            batch_size=8)
        if not bSaveBlackTargetedNum:
            # get the ori's retrieval result for each class on Black
            img_num_by_class_ori_black = get_img_num_by_class_from_img_batch(
                inputs_ori,
                model2,
                code2,
                multi_label2,
                threshold=threshold,
                batch_size=8)

            # get the target's retrieval result for targeted class only on White and Black
            img_num_target_targeted = get_targeted_from_all_class(
                img_num_by_class_target, np.expand_dims(label_targeted, 0))
            img_num_target_black_targeted = get_targeted_from_all_class(
                img_num_by_class_target_black,
                np.expand_dims(label2_targeted, 0))

            # get the adv's retrieval result for targeted class only on White and Black
            img_num_adv_targeted = get_targeted_from_all_class(
                img_num_by_class_adv, np.expand_dims(label_targeted, 0))
        print(img_num_by_class_adv_black.shape)
        img_num_adv_black_targeted = get_targeted_from_all_class(
            img_num_by_class_adv_black, np.expand_dims(label2_targeted, 0))
        if not bSaveBlackTargetedNum:
            # get the ori's retrieval result for targeted class only on Black
            img_num_by_class_ori_black_targeted = get_targeted_from_all_class(
                img_num_by_class_ori_black, np.expand_dims(label2_targeted, 0))

        # GUIDE:
        # Compare img_num_adv_black_targeted with img_num_target_targeted,
        # if one item in img_num_target_targeted is high enough, ignore it.
        # if we found one item has a great difference, we succeed.
        if not bSaveBlackTargetedNum:
            print(adv_method + ":")

            print("WhiteBox(%d imgs overall):" % (1 * j_max))
            print("", img_num_adv_targeted.sum(),
                  (img_num_adv_targeted > 0).sum())

            print("BlackBox(%d imgs overall):" % (1 * j_max))
            print("", img_num_adv_black_targeted.sum(),
                  (img_num_adv_black_targeted > 0).sum())

            code_adv_black = np.sign(
                model_np_batch(model2, inputs_adv, batch_size=8))
            code_ori_black = code_test2[i_index]
            code_targeted_black = code2[j_index_set]

            #
            code_ori_white = code_test[i_index]
            code_targeted_white = code[j_index_set]
            whiteHammingMatrix[i] = np.transpose(
                np.linalg.norm(code_ori_white - code_targeted_white,
                               ord=0,
                               axis=-1))
        blackTargetedNumMatrix[i] = img_num_adv_black_targeted
        if not bSaveBlackTargetedNum:
            code_diff_adv_target = np.transpose(
                np.linalg.norm(code_adv_black - code_targeted_black,
                               ord=0,
                               axis=-1))
            code_diff_ori_adv = np.linalg.norm(
                np.swapaxes(code_adv_black, 0, 1) - code_ori_black,
                ord=0,
                axis=-1)
            code_diff_ori_target = np.array([
                np.transpose(
                    np.linalg.norm(code_ori_black - code_targeted_black[j],
                                   ord=0,
                                   axis=-1)) for j in range(j_max)
            ])

            print(code_diff_adv_target.mean())
            print(code_diff_ori_adv.mean())
            print(code_diff_ori_target.mean())

            succeed_index = np.where(img_num_adv_black_targeted > 0)
            print(img_num_adv_black_targeted[
                img_num_adv_black_targeted > 0].astype(int))
            print(succeed_index[0], '\n', succeed_index[1])

            oriBlackCountMatrix[i] = img_num_by_class_ori_black_targeted[0]
            whiteMatrix[i][0], whiteMatrix[i][1] = img_num_adv_targeted.sum(
            ), (img_num_adv_targeted > 0).sum()
            blackMatrix[i][0], blackMatrix[i][
                1] = img_num_adv_black_targeted.sum(), (
                    img_num_adv_black_targeted > 0).sum()
            distanceMatrix[i, 0], distanceMatrix[i, 1], distanceMatrix[i, 2] = \
                code_diff_adv_target.mean(), code_diff_ori_adv.mean(), code_diff_ori_target.mean()
            targetCountMatrix[i] = img_num_adv_black_targeted[
                img_num_adv_black_targeted > 0].astype(int)
            succeedIndexXMatrix[i], succeedIndexYMatrix[i] = succeed_index[
                0], succeed_index[1]
    if not bSaveBlackTargetedNum:
        print("dis_method:%s" % (dis_method))
        print("retrieval num of ori in blackbox:\n",
              oriBlackCountMatrix.astype(int))
        print("retrieval num and sample size of adv in whitebox:\n",
              whiteMatrix.astype(int).transpose())
        print("retrieval num and sample size of adv in blackbox:\n",
              blackMatrix.astype(int).transpose())
        print("distanceMatrix of adv in blackbox:\n",
              distanceMatrix.transpose())
        print("attack percentage(i-level, white and black):%f,%f" %
              (float((whiteMatrix[:, 1] > 0).sum()) / i_max,
               float((blackMatrix[:, 1] > 0).sum()) / i_max))
        print("attack percentage(i*j-level, white and black):%f,%f" %
              (float((whiteMatrix[:, 1]).sum()) / i_max / j_max,
               float((blackMatrix[:, 1]).sum()) / i_max / j_max))

    if bSaveWhiteHamming:
        np.save(path_whiteHamming, whiteHammingMatrix)
        print('Save white hamming distance matrix file to: %s' %
              (path_whiteHamming))
    if bSaveBlackTargetedNum:
        np.save(path_blackTargetedNum, blackTargetedNumMatrix)
        print('Save black targeted number file to: %s' %
              (path_blackTargetedNum))
            inputs_adv_cornell,
            model2,
            code2,
            multi_label2,
            threshold=5,
            batch_size=8)
        img_num_target_targeted_white = np.zeros([i_max, j_max])
        img_num_target_targeted_black = np.zeros([i_max, j_max])
        img_num_target_ori = np.zeros([i_max, j_max])
        for i in range(i_max):
            #i_index = int(test_true_id_x[i_index_set[i]])
            j_index_set = j_index_matrix[int(
                test_true_label_y[i_index_set[i]])].astype(int)
            label_targeted = multi_label[j_index_set]

            img_num_target_targeted_white[i] = get_targeted_from_all_class(
                img_num_by_class_adv_cornell_white[i], label_targeted)
            img_num_target_targeted_black[i] = get_targeted_from_all_class(
                img_num_by_class_adv_cornell_black[i], label_targeted)
            targetCodes = code[j_index_set]
            img_num_by_class_ori_white = get_query_result_num_by_class(
                targetCodes, code, multi_label, threshold=5)
            img_num_target_ori[i] = get_targeted_from_all_class(
                img_num_by_class_ori_white, label_targeted
            )  #get_targeted_from_all_class(img_num_by_class_adv_cornell_white[i], label_targeted)
        img_num_target_ori = img_num_target_ori.astype(int)
        print("img_num_target_targeted_white:",
              (img_num_target_targeted_white >= 100).sum())
        print("img_num_target_targeted_black:",
              (img_num_target_targeted_black >= 10).sum())
        print("img_num_target_targeted_black(valid):", (
            img_num_target_targeted_black[img_num_target_targeted_white >= 100]