def setUp(self):
     self.p1 = air_cargo_p1()
     self.act1 = Action(
         expr('Load(C1, P1, SFO)'),
         [[expr('At(C1, SFO)'), expr('At(P1, SFO)')], []],
         [[expr('In(C1, P1)')], [expr('At(C1, SFO)')]]
     )
 def setUp(self):
     self.p1 = air_cargo_p1()
     self.act1 = Action(
         expr('Load(C1, P1, SFO)'),
         [[expr('At(C1, SFO)'), expr('At(P1, SFO)')], []],
         [[expr('In(C1, P1)')], [expr('At(C1, SFO)')]]
     )
    def setUp(self):

        self.p1 = air_cargo_p1(
        )  #Execute air caogo 1 initiation including building list of actions
        self.act1 = Action(
            expr('Load(C1, P1, SFO)'),
            [[expr('At(C1, SFO)'), expr('At(P1, SFO)')], []],
            [[expr('In(C1, P1)')], [expr('At(C1, SFO)')]])
Пример #4
0
def compare():
    print("Comparative")
    #print(PROBLEMS)
    #print(SEARCHES)
    #main(['1', '2', '3'], ['1', '2', '3', '4', '5'])
    compare_searchers(
        [air_cargo_p1(), air_cargo_p2(),
         air_cargo_p3()], ["ACP1", "ACP2", "ACP3"], [
             breadth_first_search,
             depth_first_graph_search,
         ])
 def setUp(self):
     self.p1 = air_cargo_p1()
Пример #6
0
from my_air_cargo_problems import (
    air_cargo_p1,
    air_cargo_p2,
    air_cargo_p3,
)
from aimacode.search import (breadth_first_search, astar_search,
                             breadth_first_tree_search,
                             depth_first_graph_search, uniform_cost_search,
                             greedy_best_first_graph_search,
                             depth_limited_search, recursive_best_first_search)
from run_search import run_search

if __name__ == '__main__':
    p1 = air_cargo_p1()
    print("Initial state for this problem is {}".format(p1.initial))
    #print("Actions for this domain are:")
    #for a in p1.actions_list:
    #    print('   {}{}'.format(a.name, a.args))
    #print("Fluents in this problem are:")
    #for f in p1.state_map:
    #    print('   {}'.format(f))
    print("Goal requirement for this problem are:")
    for g in p1.goal:
        print('   {}'.format(g))
    print()

    print("*** A-star ignore preconditions heuristic")
    run_search(p1, astar_search, p1.h_ignore_preconditions)

    print("A-star levelsum heuristic")
    run_search(p1, astar_search, p1.h_pg_levelsum)
Пример #7
0
import argparse
from timeit import default_timer as timer
from aimacode.search import InstrumentedProblem
from aimacode.search import (breadth_first_search, astar_search,
    breadth_first_tree_search, depth_first_graph_search, uniform_cost_search,
    greedy_best_first_graph_search, depth_limited_search,
    recursive_best_first_search,Node)
from my_air_cargo_problems import air_cargo_p1, air_cargo_p2, air_cargo_p3
from my_planning_graph import PlanningGraph
from run_search import run_search

print(air_cargo_p1)
#node = Node(air_cargo_p1.initial)
#print(node)

p = air_cargo_p1()
print("**** Have Cake example problem setup ****")
print("Initial state for this problem is {}".format(p.initial))
print("Actions for this domain are:")
for a in p.actions_list:
    print('   {}{}'.format(a.name, a.args))
print("Fluents in this problem are:")
for f in p.state_map:
    print('   {}'.format(f))
print("Goal requirement for this problem are:")
for g in p.goal:
    print('   {}'.format(g))
print()
print("*** Breadth First Search")
run_search(p, breadth_first_search)
print("*** Depth First Search")
 def setUp(self):
     self.p1 = air_cargo_p1()
    def setUp(self):
        self.p = have_cake()
        self.pg = PlanningGraph(self.p, self.p.initial)


def test_add_action_level(self):
    for level, nodeset in enumerate(self.pg.a_levels):
        for node in nodeset:
            print("Level {}: {}{})".format(level, node.action.name,
                                           node.action.args))

#self.assertEqual(len(self.pg.a_levels[0]), 3, len(self.pg.a_levels[0]))
#self.assertEqual(len(self.pg.a_levels[1]), 6, len(self.pg.a_levels[1]))

if __name__ == '__main__':
    p = air_cargo_p1()

    print("Initial state for this problem is {}".format(p.initial))
    print("Actions for this domain are:")
    print(len(p.initial))
    print(len(p.state_map))
    for a in p.actions_list:
        print('   {}{}'.format(a.name, a.args))
    print("Fluents in this problem are:")
    for f in p.state_map:
        print('   {}'.format(f))
    print("Goal requirement for this problem are:")
    for g in p.goal:
        print('   {}'.format(g))
    #print(decode_state(p.initial, p.state_map))
    p2 = air_cargo_p1()