Пример #1
0
    model = build_model(cfg)
    logger.info("Model:\n{}".format(model))
    if args.eval_only:
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
        return do_test(cfg, model)

    distributed = comm.get_world_size() > 1
    if distributed:
        model = DistributedDataParallel(
            model, device_ids=[comm.get_local_rank()], broadcast_buffers=False
        )

    do_train(cfg, model)
    return do_test(cfg, model)


if __name__ == "__main__":
    args = default_argument_parser().parse_args()
    print("Command Line Args:", args)
    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )
Пример #2
0
    logger.info("{} iters in {} seconds.".format(max_iter, timer.seconds()))


if __name__ == "__main__":
    parser = default_argument_parser()
    parser.add_argument("--task",
                        choices=["train", "eval", "data"],
                        required=True)
    args = parser.parse_args()
    assert not args.eval_only

    if args.task == "data":
        f = benchmark_data
    elif args.task == "train":
        """
        Note: training speed may not be representative.
        The training cost of a R-CNN model varies with the content of the data
        and the quality of the model.
        """
        f = benchmark_train
    elif args.task == "eval":
        f = benchmark_eval
        # only benchmark single-GPU inference.
        assert args.num_gpus == 1 and args.num_machines == 1
    launch(f,
           args.num_gpus,
           args.num_machines,
           args.machine_rank,
           args.dist_url,
           args=(args, ))