Пример #1
0
    def forward(self, images, features, gt_instances=None):
        """
        See :class:`RPN.forward`.
        """
        num_branch = self.num_branch if self.training or not self.trident_fast else 1
        # Duplicate images and gt_instances for all branches in TridentNet.
        all_images = ImageList(torch.cat([images.tensor] * num_branch),
                               images.image_sizes * num_branch)
        all_gt_instances = gt_instances * num_branch if gt_instances is not None else None

        return super(TridentRPN, self).forward(all_images, features,
                                               all_gt_instances)
Пример #2
0
    def test_rroi_heads(self):
        torch.manual_seed(121)
        cfg = get_cfg()
        cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN"
        cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator"
        cfg.MODEL.ROI_HEADS.NAME = "RROIHeads"
        cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead"
        cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2
        cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1)
        cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead"
        cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignRotated"
        cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5, 1)
        backbone = build_backbone(cfg)
        num_images = 2
        images_tensor = torch.rand(num_images, 20, 30)
        image_sizes = [(10, 10), (20, 30)]
        images = ImageList(images_tensor, image_sizes)
        num_channels = 1024
        features = {"res4": torch.rand(num_images, num_channels, 1, 2)}

        image_shape = (15, 15)
        gt_boxes0 = torch.tensor([[2, 2, 2, 2, 30], [4, 4, 4, 4, 0]],
                                 dtype=torch.float32)
        gt_instance0 = Instances(image_shape)
        gt_instance0.gt_boxes = RotatedBoxes(gt_boxes0)
        gt_instance0.gt_classes = torch.tensor([2, 1])
        gt_boxes1 = torch.tensor([[1.5, 5.5, 1, 3, 0], [8.5, 4, 3, 2, -50]],
                                 dtype=torch.float32)
        gt_instance1 = Instances(image_shape)
        gt_instance1.gt_boxes = RotatedBoxes(gt_boxes1)
        gt_instance1.gt_classes = torch.tensor([1, 2])
        gt_instances = [gt_instance0, gt_instance1]

        proposal_generator = build_proposal_generator(cfg,
                                                      backbone.output_shape())
        roi_heads = build_roi_heads(cfg, backbone.output_shape())

        with EventStorage():  # capture events in a new storage to discard them
            proposals, proposal_losses = proposal_generator(
                images, features, gt_instances)
            _, detector_losses = roi_heads(images, features, proposals,
                                           gt_instances)

        expected_losses = {
            "loss_cls": torch.tensor(4.381443977355957),
            "loss_box_reg": torch.tensor(0.0011560433777049184),
        }
        for name in expected_losses.keys():
            err_msg = "detector_losses[{}] = {}, expected losses = {}".format(
                name, detector_losses[name], expected_losses[name])
            self.assertTrue(
                torch.allclose(detector_losses[name], expected_losses[name]),
                err_msg)
Пример #3
0
 def test_rpn_inf_nan_data(self):
     self.model.eval()
     for tensor in [self._inf_tensor, self._nan_tensor]:
         images = ImageList(tensor(1, 3, 512, 512), [(510, 510)])
         features = {
             "p2": tensor(1, 256, 256, 256),
             "p3": tensor(1, 256, 128, 128),
             "p4": tensor(1, 256, 64, 64),
             "p5": tensor(1, 256, 32, 32),
             "p6": tensor(1, 256, 16, 16),
         }
         props, _ = self.model.proposal_generator(images, features)
         self.assertEqual(len(props[0]), 0)
Пример #4
0
    def _caffe2_preprocess_image(self, inputs):
        """
        Caffe2 implementation of preprocess_image, which is called inside each MetaArch's forward.
        It normalizes the input images, and the final caffe2 graph assumes the
        inputs have been batched already.
        """
        data, im_info = inputs
        data = alias(data, "data")
        im_info = alias(im_info, "im_info")
        normalized_data = self._wrapped_model.normalizer(data)
        normalized_data = alias(normalized_data, "normalized_data")

        # Pack (data, im_info) into ImageList which is recognized by self.inference.
        images = ImageList(tensor=normalized_data, image_sizes=im_info)
        return images
Пример #5
0
    def test_roi_heads(self):
        torch.manual_seed(121)
        cfg = get_cfg()
        cfg.MODEL.ROI_HEADS.NAME = "StandardROIHeads"
        cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead"
        cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2
        cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2"
        cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5)
        backbone = build_backbone(cfg)
        num_images = 2
        images_tensor = torch.rand(num_images, 20, 30)
        image_sizes = [(10, 10), (20, 30)]
        images = ImageList(images_tensor, image_sizes)
        num_channels = 1024
        features = {"res4": torch.rand(num_images, num_channels, 1, 2)}

        image_shape = (15, 15)
        gt_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]],
                                 dtype=torch.float32)
        gt_instance0 = Instances(image_shape)
        gt_instance0.gt_boxes = Boxes(gt_boxes0)
        gt_instance0.gt_classes = torch.tensor([2, 1])
        gt_boxes1 = torch.tensor([[1, 5, 2, 8], [7, 3, 10, 5]],
                                 dtype=torch.float32)
        gt_instance1 = Instances(image_shape)
        gt_instance1.gt_boxes = Boxes(gt_boxes1)
        gt_instance1.gt_classes = torch.tensor([1, 2])
        gt_instances = [gt_instance0, gt_instance1]

        proposal_generator = build_proposal_generator(cfg,
                                                      backbone.output_shape())
        roi_heads = build_roi_heads(cfg, backbone.output_shape())

        with EventStorage():  # capture events in a new storage to discard them
            proposals, proposal_losses = proposal_generator(
                images, features, gt_instances)
            _, detector_losses = roi_heads(images, features, proposals,
                                           gt_instances)

        expected_losses = {
            "loss_cls": torch.tensor(4.4236516953),
            "loss_box_reg": torch.tensor(0.0091214813),
        }
        for name in expected_losses.keys():
            self.assertTrue(
                torch.allclose(detector_losses[name], expected_losses[name]))
Пример #6
0
 def test_roiheads_inf_nan_data(self):
     self.model.eval()
     for tensor in [self._inf_tensor, self._nan_tensor]:
         images = ImageList(tensor(1, 3, 512, 512), [(510, 510)])
         features = {
             "p2": tensor(1, 256, 256, 256),
             "p3": tensor(1, 256, 128, 128),
             "p4": tensor(1, 256, 64, 64),
             "p5": tensor(1, 256, 32, 32),
             "p6": tensor(1, 256, 16, 16),
         }
         props = [Instances((510, 510))]
         props[0].proposal_boxes = Boxes([[10, 10, 20, 20]
                                          ]).to(device=self.model.device)
         props[0].objectness_logits = torch.tensor([1.0]).reshape(1, 1)
         det, _ = self.model.roi_heads(images, features, props)
         self.assertEqual(len(det[0]), 0)
Пример #7
0
 def test_inf_nan_data(self):
     self.model.eval()
     self.model.score_threshold = -999999999
     for tensor in [self._inf_tensor, self._nan_tensor]:
         images = ImageList(tensor(1, 3, 512, 512), [(510, 510)])
         features = [
             tensor(1, 256, 128, 128),
             tensor(1, 256, 64, 64),
             tensor(1, 256, 32, 32),
             tensor(1, 256, 16, 16),
             tensor(1, 256, 8, 8),
         ]
         anchors = self.model.anchor_generator(features)
         box_cls, box_delta = self.model.head(features)
         box_cls = [tensor(*k.shape) for k in box_cls]
         box_delta = [tensor(*k.shape) for k in box_delta]
         det = self.model.inference(box_cls, box_delta, anchors,
                                    images.image_sizes)
         # all predictions (if any) are infinite or nan
         if len(det[0]):
             self.assertTrue(
                 torch.isfinite(det[0].pred_boxes.tensor).sum() == 0)
Пример #8
0
    def test_rrpn(self):
        torch.manual_seed(121)
        cfg = get_cfg()
        cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN"
        cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator"
        cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64]]
        cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.25, 1]]
        cfg.MODEL.ANCHOR_GENERATOR.ANGLES = [[0, 60]]
        cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1)
        cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead"
        backbone = build_backbone(cfg)
        proposal_generator = build_proposal_generator(cfg,
                                                      backbone.output_shape())
        num_images = 2
        images_tensor = torch.rand(num_images, 20, 30)
        image_sizes = [(10, 10), (20, 30)]
        images = ImageList(images_tensor, image_sizes)
        image_shape = (15, 15)
        num_channels = 1024
        features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
        gt_boxes = torch.tensor([[2, 2, 2, 2, 0], [4, 4, 4, 4, 0]],
                                dtype=torch.float32)
        gt_instances = Instances(image_shape)
        gt_instances.gt_boxes = RotatedBoxes(gt_boxes)
        with EventStorage():  # capture events in a new storage to discard them
            proposals, proposal_losses = proposal_generator(
                images, features, [gt_instances[0], gt_instances[1]])

        expected_losses = {
            "loss_rpn_cls": torch.tensor(0.0432923734),
            "loss_rpn_loc": torch.tensor(0.1552739739),
        }
        for name in expected_losses.keys():
            self.assertTrue(
                torch.allclose(proposal_losses[name], expected_losses[name]))

        expected_proposal_boxes = [
            RotatedBoxes(
                torch.tensor([
                    [
                        0.60189795, 1.24095452, 61.98131943, 18.03621292,
                        -4.07244873
                    ],
                    [
                        15.64940453, 1.69624567, 59.59749603, 16.34339333,
                        2.62692475
                    ],
                    [
                        -3.02982378, -2.69752932, 67.90952301, 59.62455750,
                        59.97010040
                    ],
                    [
                        16.71863365, 1.98309708, 35.61507797, 32.81484985,
                        62.92267227
                    ],
                    [
                        0.49432933, -7.92979717, 67.77606201, 62.93098450,
                        -1.85656738
                    ],
                    [
                        8.00880814, 1.36017394, 121.81007385, 32.74150467,
                        50.44297409
                    ],
                    [
                        16.44299889, -4.82221127, 63.39775848, 61.22503662,
                        54.12270737
                    ],
                    [
                        5.00000000, 5.00000000, 10.00000000, 10.00000000,
                        -0.76943970
                    ],
                    [
                        17.64130402, -0.98095351, 61.40377808, 16.28918839,
                        55.53118134
                    ],
                    [
                        0.13016054, 4.60568953, 35.80157471, 32.30180359,
                        62.52872086
                    ],
                    [
                        -4.26460743, 0.39604485, 124.30079651, 31.84611320,
                        -1.58203125
                    ],
                    [
                        7.52815342, -0.91636634, 62.39784622, 15.45565224,
                        60.79549789
                    ],
                ])),
            RotatedBoxes(
                torch.tensor([
                    [
                        0.07734215, 0.81635046, 65.33510590, 17.34688377,
                        -1.51821899
                    ],
                    [
                        -3.41833067, -3.11320257, 64.17595673, 60.55617905,
                        58.27033234
                    ],
                    [
                        20.67383385, -6.16561556, 63.60531998, 62.52315903,
                        54.85546494
                    ],
                    [
                        15.00000000, 10.00000000, 30.00000000, 20.00000000,
                        -0.18218994
                    ],
                    [
                        9.22646523, -6.84775209, 62.09895706, 65.46472931,
                        -2.74307251
                    ],
                    [
                        15.00000000, 4.93451595, 30.00000000, 9.86903191,
                        -0.60272217
                    ],
                    [
                        8.88342094, 2.65560246, 120.95362854, 32.45022202,
                        55.75970078
                    ],
                    [
                        16.39088631, 2.33887148, 34.78761292, 35.61492920,
                        60.81977463
                    ],
                    [
                        9.78298569, 10.00000000, 19.56597137, 20.00000000,
                        -0.86660767
                    ],
                    [
                        1.28576660, 5.49873352, 34.93610382, 33.22600174,
                        60.51599884
                    ],
                    [
                        17.58912468, -1.63270092, 62.96052551, 16.45713997,
                        52.91245270
                    ],
                    [
                        5.64749718, -1.90428460, 62.37649155, 16.19474792,
                        61.09543991
                    ],
                    [
                        0.82255805, 2.34931135, 118.83985901, 32.83671188,
                        56.50753784
                    ],
                    [
                        -5.33874989, 1.64404404, 125.28501892, 33.35424042,
                        -2.80731201
                    ],
                ])),
        ]

        expected_objectness_logits = [
            torch.tensor([
                0.10111768,
                0.09112845,
                0.08466332,
                0.07589971,
                0.06650183,
                0.06350251,
                0.04299347,
                0.01864817,
                0.00986163,
                0.00078543,
                -0.04573630,
                -0.04799230,
            ]),
            torch.tensor([
                0.11373727,
                0.09377633,
                0.05281663,
                0.05143715,
                0.04040275,
                0.03250912,
                0.01307789,
                0.01177734,
                0.00038105,
                -0.00540255,
                -0.01194804,
                -0.01461012,
                -0.03061717,
                -0.03599222,
            ]),
        ]

        torch.set_printoptions(precision=8, sci_mode=False)

        for proposal, expected_proposal_box, im_size, expected_objectness_logit in zip(
                proposals, expected_proposal_boxes, image_sizes,
                expected_objectness_logits):
            self.assertEqual(len(proposal), len(expected_proposal_box))
            self.assertEqual(proposal.image_size, im_size)
            # It seems that there's some randomness in the result across different machines:
            # This test can be run on a local machine for 100 times with exactly the same result,
            # However, a different machine might produce slightly different results,
            # thus the atol here.
            err_msg = "computed proposal boxes = {}, expected {}".format(
                proposal.proposal_boxes.tensor, expected_proposal_box.tensor)
            self.assertTrue(
                torch.allclose(proposal.proposal_boxes.tensor,
                               expected_proposal_box.tensor,
                               atol=1e-5),
                err_msg,
            )

            err_msg = "computed objectness logits = {}, expected {}".format(
                proposal.objectness_logits, expected_objectness_logit)
            self.assertTrue(
                torch.allclose(proposal.objectness_logits,
                               expected_objectness_logit,
                               atol=1e-5),
                err_msg,
            )
Пример #9
0
    def test_rpn(self):
        torch.manual_seed(121)
        cfg = get_cfg()
        cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RPN"
        cfg.MODEL.ANCHOR_GENERATOR.NAME = "DefaultAnchorGenerator"
        cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1)
        backbone = build_backbone(cfg)
        proposal_generator = build_proposal_generator(cfg,
                                                      backbone.output_shape())
        num_images = 2
        images_tensor = torch.rand(num_images, 20, 30)
        image_sizes = [(10, 10), (20, 30)]
        images = ImageList(images_tensor, image_sizes)
        image_shape = (15, 15)
        num_channels = 1024
        features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
        gt_boxes = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]],
                                dtype=torch.float32)
        gt_instances = Instances(image_shape)
        gt_instances.gt_boxes = Boxes(gt_boxes)
        with EventStorage():  # capture events in a new storage to discard them
            proposals, proposal_losses = proposal_generator(
                images, features, [gt_instances[0], gt_instances[1]])

        expected_losses = {
            "loss_rpn_cls": torch.tensor(0.0804563984),
            "loss_rpn_loc": torch.tensor(0.0990132466),
        }
        for name in expected_losses.keys():
            self.assertTrue(
                torch.allclose(proposal_losses[name], expected_losses[name]))

        expected_proposal_boxes = [
            Boxes(torch.tensor([[0, 0, 10, 10], [7.3365392685, 0, 10, 10]])),
            Boxes(
                torch.tensor([
                    [0, 0, 30, 20],
                    [0, 0, 16.7862777710, 13.1362524033],
                    [0, 0, 30, 13.3173446655],
                    [0, 0, 10.8602609634, 20],
                    [7.7165775299, 0, 27.3875980377, 20],
                ])),
        ]

        expected_objectness_logits = [
            torch.tensor([0.1225359365, -0.0133192837]),
            torch.tensor([
                0.1415634006, 0.0989848152, 0.0565387346, -0.0072308783,
                -0.0428492837
            ]),
        ]

        for proposal, expected_proposal_box, im_size, expected_objectness_logit in zip(
                proposals, expected_proposal_boxes, image_sizes,
                expected_objectness_logits):
            self.assertEqual(len(proposal), len(expected_proposal_box))
            self.assertEqual(proposal.image_size, im_size)
            self.assertTrue(
                torch.allclose(proposal.proposal_boxes.tensor,
                               expected_proposal_box.tensor))
            self.assertTrue(
                torch.allclose(proposal.objectness_logits,
                               expected_objectness_logit))