def __init__(self): self.feature_encoder = load_obj(model_path, "feature_encoder") self.trained_model = load_obj(model_path, "rf_recommender") self.user_data = self.load_user_data() self.movie_lookup = self.load_movie_names() self.movie_ids = list(self.movie_lookup.keys()) self.c = metric.MetricClient()
def __init__(self): model_parameters = load_obj(model_path, "model_parameters") self.trained_model = CFModel(model_parameters["max_userid"], model_parameters["max_movieid"], model_parameters["k_factors"]) self.trained_model.load_weights(os.path.join(model_path, 'weights.h5')) self.trained_model._make_predict_function() self.class_names = ["class:rating"] self.movie_lookup = self.load_movie_names() self.movie_ids = list(self.movie_lookup.keys()) self.c = metric.MetricClient()
def __init__(self): self.sess = tf.Session() saver = tf.train.import_meta_graph( os.path.join(model_path, "model.ckpt.meta")) saver.restore(self.sess, os.path.join(model_path, "model.ckpt")) self.c = metric.MetricClient()
def __init__(self): self.model = pickle.load(open(model_path + "lr.pkl", 'rb')) self.c = metric.MetricClient()
def __init__(self): self.model = load(os.path.join(model_path, 'sk.pkl')) self.c = metric.MetricClient()
def __init__(self): self.sess = GPT2Generator.start_tf_sess() self.load_gpt2(self.sess) self.c = metric.MetricClient()
def __init__(self): self.model = keras.models.load_model(os.path.join(model_path, "saved_models/keras_cifar10_trained_model.h5")) self.c = metric.MetricClient()