Пример #1
0
 def __hrepr__(self, H, hrepr):
     """Return HTML representation (uses buche-cytoscape)."""
     if hrepr.config.depth > 1 and not hrepr.config.graph_expand_all:
         label = short_labeler.label(self, True)
         return H.span['node', f'node-Graph'](label)
     dc = hrepr.config.duplicate_constants
     dfv = hrepr.config.duplicate_free_variables
     fin = hrepr.config.function_in_node
     fr = hrepr.config.follow_references
     tgen = hrepr.config.node_tooltip
     cgen = hrepr.config.node_class
     xsty = hrepr.config.graph_style
     beau = hrepr.config.graph_beautify
     gpr = MyiaGraphPrinter(
         {self},
         duplicate_constants=True if dc is None else dc,
         duplicate_free_variables=True if dfv is None else dfv,
         function_in_node=True if fin is None else fin,
         follow_references=True if fr is None else fr,
         tooltip_gen=tgen,
         class_gen=cgen,
         extra_style=xsty,
         beautify=True if beau is None else beau)
     gpr.process()
     return gpr.__hrepr__(H, hrepr)
Пример #2
0
            def run_test(args):
                pip = pipeline.make()
                argspec = tuple({'value': arg} for arg in args)
                pip.resources.inferrer.fill_in(argspec)
                print(argspec)
                for arg in argspec:
                    del arg['value']

                result_py = fn(*args)

                try:
                    res = pip(input=fn, argspec=argspec)
                except InferenceError as ierr:
                    print_inference_error(ierr)
                    raise ierr
                except ValidationError as verr:
                    print('Collected the following errors:')
                    for err in verr.errors:
                        n = err.node
                        nlbl = lbl.label(n)
                        print(f'   {nlbl} ({type(n).__name__}) :: {n.type}')
                        print(f'      {err.args[0]}')
                    raise verr

                result_final = res['output'](*args)
                if isinstance(result_py, numpy.ndarray):
                    assert (result_py == result_final).all()
                else:
                    assert result_py == result_final
Пример #3
0
def _opt_fancy_array_map(optimizer, node, equiv):
    xs = equiv[Xs]
    v = equiv[V]
    if v.is_constant_graph():
        return node
    name = short_labeler.label(v)
    ct = Constant(GraphCosmeticPrimitive(f'[{name}]'))
    with About(node.debug, 'cosmetic'):
        return Apply([ct, *xs], node.graph)
Пример #4
0
 def mkdict(info):
     d = {k: v for k, v in info.__dict__.items()
          if not k.startswith('_') and k not in exclude}
     tr = d.get('trace', None)
     if tr:
         fr = tr[-3]
         d['trace'] = parser.Location(
             fr.filename, fr.lineno, 0, fr.lineno, 0, None
         )
     d['name'] = short_labeler.label(info)
     return d
Пример #5
0
            def run_test(args):
                if isinstance(args, Exception):
                    exc = type(args)
                    args = args.args
                else:
                    exc = None
                pdef = pipeline
                if not validate:
                    pdef = pdef.configure(validate=False)
                pip = pdef.make()
                if abstract is None:
                    argspec = tuple(
                        from_value(arg, broaden=True) for arg in args)
                else:
                    argspec = tuple(to_abstract_test(a) for a in abstract)

                if exc is not None:
                    try:
                        mfn = pip(input=fn, argspec=argspec)
                        mfn['output'](*args)
                    except exc:
                        pass
                    return

                result_py = fn(*args)

                try:
                    res = pip(input=fn, argspec=argspec)
                except InferenceError as ierr:
                    print_inference_error(ierr)
                    raise ierr
                except ValidationError as verr:
                    print('Collected the following errors:')
                    for err in verr.errors:
                        n = err.node
                        nlbl = lbl.label(n)
                        tname = type(n).__name__
                        print(f'   {nlbl} ({tname}) :: {n.abstract}')
                        print(f'      {err.args[0]}')
                    raise verr

                result_final = res['output'](*args)
                assert _eq(result_py, result_final)
Пример #6
0
            def run_test(args):
                pip = pipeline.make()
                argspec = tuple(from_value(arg, broaden=True) for arg in args)

                result_py = fn(*args)

                try:
                    res = pip(input=fn, argspec=argspec)
                except InferenceError as ierr:
                    print_inference_error(ierr)
                    raise ierr
                except ValidationError as verr:
                    print('Collected the following errors:')
                    for err in verr.errors:
                        n = err.node
                        nlbl = lbl.label(n)
                        print(f'   {nlbl} ({type(n).__name__}) :: {n.type}')
                        print(f'      {err.args[0]}')
                    raise verr

                result_final = res['output'](*args)
                assert _eq(result_py, result_final)
Пример #7
0
 def lbl(x):
     if isinstance(x, ParentProxy):
         return f"{short_labeler.label(x.graph)}'"
     else:
         return short_labeler.label(x)
Пример #8
0
 def __hrepr__(self, H, hrepr):
     class_name = 'constant'
     label = 'Prox:' + short_labeler.label(self.graph, True)
     return H.span['node', f'node-{class_name}'](label)
Пример #9
0
 def __hrepr__(self, H, hrepr):
     class_name = self.__class__.__name__.lower()
     label = short_labeler.label(self, True)
     return H.span['node', f'node-{class_name}'](label)
Пример #10
0
 def __hrepr__(self, H, hrepr):
     class_name = "constant"
     label = "Prox:" + short_labeler.label(self.graph, True)
     return H.span["node", f"node-{class_name}"](label)
Пример #11
0
 def name(node):
     return short_labeler.label(node, fn_label=False)