Пример #1
0
def op(proj_name):
    import p
    p.init()
    p.proj_name = proj_name
    set_params.op(1)
    p.create_dir()
    if COMM.rank == 0:
        print "Computing Optical Flow"
        data1 = myio.fin1(p.tess_file)
        CG = data1['CG']
        numberofJobs = len(CG)
        input_data = divide(numberofJobs)
    if COMM.rank == 0:
        jobs = split(input_data, COMM.size)
    else:
        jobs = None
    jobs = COMM.scatter(jobs, root=0)

    res = []
    for job in jobs:
        ComputeOptFlowPrDPsiAll1(job)
        res.append([])
    if COMM.rank == 0:
        set_params.op(0)
    MPI.COMM_WORLD.gather(res, root=0)
    return
Пример #2
0
def op(proj_name):
    import p
    p.init()
    p.proj_name = proj_name
    set_params.op(1)
    p.create_dir()
    if COMM.rank == 0:
        print "Computing Edge Measurements"
        data1 = myio.fin1(p.CC_graph_file)
        G = data1['G']
        edgeNumRange = data1['edgeNumRange']
        flowVecPctThresh = p.opt_movie['flowVecPctThresh']
        input_data = divide1(edgeNumRange,G)
        params1 = dict(G=G, flowVecPctThresh=flowVecPctThresh)
    else:
        params1 = None
    params1 = COMM.bcast(params1, root=0)
    if COMM.rank == 0:
        jobs = split(input_data, COMM.size)
    else:
        jobs = None

    jobs = COMM.scatter(jobs, root=0)

    res = []
    for job in jobs:
        G = params1['G']
        flowVecPctThresh = params1['flowVecPctThresh']
        ComputeEdgeMeasurePairWisePsiAll(job,G,flowVecPctThresh)
        res.append([])
    if COMM.rank == 0:
        set_params.op(0)
    MPI.COMM_WORLD.gather(res, root=0)
    return
Пример #3
0
def readBadNodesPsisTau(badNodesPsisTaufile):
    try:
        dataR = myio.fin1(badNodesPsisTaufile)
        badNodesPsisTau = dataR['badNodesPsisTau']
    except:
        badNodesPsisTau = np.empty((0, 0))

    return badNodesPsisTau
Пример #4
0
def divide(N):
    ll = []
    for prD in range(N):
        CC_OF_file = '{}{}'.format(p.CC_OF_file, prD)
        if os.path.exists(CC_OF_file):
            data = myio.fin1(CC_OF_file)
            if data is not None:
                continue
        ll.append([CC_OF_file, prD])
    return ll
Пример #5
0
def divide1(R, G):
    ll = []
    for e in R:
        currPrD = G['Edges'][e, 0]
        nbrPrD = G['Edges'][e, 1]
        CC_meas_file = '{}{}_{}_{}'.format(p.CC_meas_file, e, currPrD, nbrPrD)
        if os.path.exists(CC_meas_file):
            data = myio.fin1(CC_meas_file)
            if data is not None:
                continue
        ll.append([currPrD,nbrPrD,CC_meas_file,e])
    return ll
def count1(R, G):
    c = 0
    for e in R:
        currPrD = G['Edges'][e, 0]
        nbrPrD = G['Edges'][e, 1]
        CC_meas_file = '{}{}_{}_{}'.format(p.CC_meas_file, e, currPrD, nbrPrD)
        if os.path.exists(CC_meas_file):
            data = myio.fin1(CC_meas_file)
            if data is not None:
                continue
        c += 1
    return c
def op(CC_graph_file_pruned):
    import p

    trash_list=np.array(p.trash_list)
    good_nodes = np.nonzero(trash_list==0)[0]
    bad_nodes = np.nonzero(trash_list==1)[0]
    numNodes = len(good_nodes)
    num_pruned_nodes = len(bad_nodes)

    print "Number of nodes removed from the original graph (isolated nodes):",num_pruned_nodes

    maxState = 2 * p.num_psis # Up and Down

    if numNodes> 1:

        # Modifying the graph structure
        data = myio.fin1(p.CC_graph_file)
        G=data['G']

        G.update(nPsiModes=p.num_psis)

        # prune edges corresponding to the bad nodes with actually removing those bad nodes
        newAdjMat=lil_matrix(G['AdjMat'])
        newAdjMat[bad_nodes,:]=0
        newAdjMat[:,bad_nodes]=0


        newAdjMat = csr_matrix(newAdjMat)
        G.update(AdjMat=newAdjMat)
         # Updated graph info
        G = CreateGraphStruct(G['maxState'],[],[], newAdjMat)
        #print 'newEdges',newEdges
        #print 'num_newEdges',num_newEdges

        #print 'bad_nodes',bad_nodes
        #print 'Number of Nodes in the pruned graph',np.unique(G['Edges'])


    else:
        print 'Single PrD. Empty graph structure created with one node.'
        G = CreateGraphStruct(maxState, [0], 0)

    # Determine if there are multiple connected components / subgraph
    # proceed to the pairwise measurements only after we are fine with the connected components
    Gsub, G = getSubGraph(G)

    # if pruned
    # replace
    #CC_graph_file_pruned = '{}_pruned'. format(p.CC_graph_file)
    myio.fout1(CC_graph_file_pruned,['G', 'Gsub'],[G, Gsub])

    return G,Gsub
Пример #8
0
def getMask2D(prD, maskType, radius):
    #print 'Reading PD from dist_file and tesselation info from tess_file.'

    if maskType == 'annular':  #annular mask
        N = p.nPix
        diam_angst = p.obj_diam
        diam_pix = diam_angst / p.pix_size
        if radius == None:  # if no input is provided
            N2 = N / 2. - .25 * (N - diam_pix) * 0.30
        else:
            N2 = radius  # also includes radius = 0
        if prD == 0:
            print('Annular mask radius: {} pixels'.format(N2))
        mask = annularMask.op(0, N2, N, N)

    elif maskType == 'volumetric':  #3d volume mask from user-input
        dist_file = '{}prD_{}'.format(p.dist_file, prD)
        data = myio.fin1(dist_file)
        PD = data['PD']
        maskFile = p.mask_vol_file

        with mrcfile.open(maskFile) as mrc:
            mask3D = mrc.data

        mask = projectMask.op(mask3D, PD)

    else:
        mask = 1
    '''
    elif maskType=='average2Dmovie':
        mask=2 # do it after reading the movie
    else:
        mask=1
        '''

    return mask
Пример #9
0
def op(prD):
    #print '\nprD',prD
    findBadPsiTau = 1
    '''
    useMask = 1 # default
    p.mask_vol_file = ''
    #use mask or not, for movies
    if not p.mask_vol_file:
        # use default annular/circular mask
        maskType = 'annular'
    else:
        useMask = 1
        maskType ='mask3Dprojection'
    '''
    useMask = 1  # default
    if p.opt_mask_type == 0:
        useMask = 0
        maskType = 'None'
        radius = p.opt_mask_param
    elif p.opt_mask_type == 1:
        useMask = 1
        maskType = 'annular'
        radius = p.opt_mask_param
    elif p.opt_mask_type == 2:
        useMask = 1
        maskType = 'volumetric'
        radius = None  # for volumetric we don't need any radius

    psi2_file = p.psi2_file
    NumPsis = p.num_psis
    #print 'NumPsis',NumPsis
    #useMask = p.useMask
    #maskType = p.maskType
    moviePrDPsis = [None] * NumPsis
    tauPrDPsis = [None] * NumPsis
    badPsis = []
    k = 0
    if useMask:
        # create one mask for a prD
        mask2D = getMask2D(prD, maskType, radius)

    for psinum in range(NumPsis):
        imgPsiFileName = '{}prD_{}_psi_{}'.format(psi2_file, prD, psinum)
        data_IMG = myio.fin1(imgPsiFileName)
        #IMG1 = data_IMG["IMG1"].T

        IMG1 = data_IMG["IMG1"].T
        tau = data_IMG["tau"]
        #print 'PrD:',prD,', Psi',psinum
        Mpsi = -IMG1

        # checkflip
        if useMask:
            # masked being applied to each frame of the movie M
            if maskType == 'average2Dmovie':
                Mpsi_masked = maskAvgMovie(Mpsi)
            else:
                Mpsi_masked = Mpsi * (mask2D.flatten('F')
                                      )  # broadcast to all frames
        else:
            Mpsi_masked = Mpsi

        #Mpsi_masked = rotate_psi(prD,Mpsi_masked)

        moviePrDPsis[psinum] = Mpsi_masked
        tauPrDPsis[psinum] = tau

        if findBadPsiTau:
            #b = findBadNodePsiTau(Mpsi,tau), if using psi-movie to determine
            b = findBadNodePsiTau(tau)
            if b:
                #print 'bad psinum',psinum
                badPsis.append(psinum)
                k = k + 1
        else:
            badPsis = []

    #print 'badPsis',badPsis
    return moviePrDPsis, badPsis
def ComputeEdgeMeasurePairWisePsiAll(input_data, G, flowVecPctThresh):

    currPrD = input_data[0]
    nbrPrD = input_data[1]
    CC_meas_file = input_data[2]
    edgeNum = input_data[3]

    currentPrDPsiFile = '{}{}'.format(p.CC_OF_file, currPrD)
    nbrPrDPsiFile = '{}{}'.format(p.CC_OF_file, nbrPrD)

    NumPsis = p.num_psis
    #print 'NumPsis',NumPsis
    #load the data for the current and neighbor prds
    #print '\nLoading data for current and neighbor PrD, Edge:{} ...'.format(edgeNum)
    data = myio.fin1(currentPrDPsiFile)
    FlowVecCurrPrD = data['FlowVecPrD']
    data = myio.fin1(nbrPrDPsiFile)
    FlowVecNbrPrD = data['FlowVecPrD']

    nEdges = G['nEdges']

    if len(FlowVecCurrPrD[0]['FWD']['Vx'].shape) > 2:
        numtblocks = FlowVecCurrPrD[0]['FWD']['Vx'].shape[2]
    else:
        numtblocks = 1

    measureOFCurrNbrFWD = np.empty((nEdges, NumPsis, NumPsis))
    measureOFCurrNbrREV = np.empty((nEdges, NumPsis, NumPsis))

    if numtblocks > 1:
        #numtblocks = 3 # temp , have to fix this from beginning
        measureOFCurrNbrFWD_tblock = np.empty(
            (nEdges, NumPsis, NumPsis * numtblocks))
        measureOFCurrNbrREV_tblock = np.empty(
            (nEdges, NumPsis, NumPsis * numtblocks))

    psiSelcurrPrD = range(NumPsis)
    psiCandidatesNnbrPrD = range(
        NumPsis)  # in case psis for currPrD is different from nbrPrD

    badNodesPsisBlock = np.zeros((G['nNodes'], NumPsis))

    #loop over for psi selections for current prD
    for psinum_currPrD in psiSelcurrPrD:

        if FlowVecCurrPrD[psinum_currPrD][
                'FWD']:  # check if this condition holds for all kind of entries of the dict
            FlowVecCurrPrDFWD = SelectFlowVec(
                FlowVecCurrPrD[psinum_currPrD]['FWD'], flowVecPctThresh)

        # psi selection candidates for the neighboring prD
        for psinum_nbrPrD in psiCandidatesNnbrPrD:
            #print '\nCurrent-PrD:{}, Current-PrD-Psi:{}\nNeighbor-PrD:{}, Neighbor-PrD-Psi:{}'.format(currPrD, psinum_currPrD, nbrPrD, psinum_nbrPrD)

            if FlowVecNbrPrD[psinum_nbrPrD]['REV']:
                FlowVecNbrPrDFWD = SelectFlowVec(
                    FlowVecNbrPrD[psinum_nbrPrD]['FWD'], flowVecPctThresh)
                FlowVecNbrPrDREV = SelectFlowVec(
                    FlowVecNbrPrD[psinum_nbrPrD]['REV'], flowVecPctThresh)

            prds_psinums = [currPrD, psinum_currPrD, nbrPrD, psinum_nbrPrD]

            FlowVecSelAFWD = FlowVecCurrPrDFWD
            FlowVecSelBFWD = FlowVecNbrPrDFWD
            FlowVecSelBREV = FlowVecNbrPrDREV

            psiMovieOFmeasures, isBadPsiAB_block = ComputeMeasuresPsiMoviesOpticalFlow(
                FlowVecSelAFWD, FlowVecSelBFWD, FlowVecSelBREV, prds_psinums)
            #print 'psiMovieOFmeasures:',psiMovieOFmeasures,'\n'
            measureOFCurrNbrFWD[edgeNum][
                psinum_currPrD,
                psinum_nbrPrD] = psiMovieOFmeasures['MeasABFWD']
            measureOFCurrNbrREV[edgeNum][
                psinum_currPrD,
                psinum_nbrPrD] = psiMovieOFmeasures['MeasABREV']

            if numtblocks > 1:
                badNodesPsisBlock[currPrD, psinum_currPrD] = -100 * np.sum(
                    isBadPsiAB_block[0])
                badNodesPsisBlock[nbrPrD, psinum_nbrPrD] = -100 * np.sum(
                    isBadPsiAB_block[1])

            if numtblocks > 1:
                t = psinum_nbrPrD * numtblocks
                #time block
                #print 't',t,'numtblocks',numtblocks
                measureOFCurrNbrFWD_tblock[edgeNum][
                    psinum_currPrD, t:t + numtblocks] = np.transpose(
                        psiMovieOFmeasures['MeasABFWD_tblock'])
                measureOFCurrNbrREV_tblock[edgeNum][
                    psinum_currPrD, t:t + numtblocks] = np.transpose(
                        psiMovieOFmeasures['MeasABREV_tblock'])

    measureOFCurrNbrEdge = np.hstack(
        (measureOFCurrNbrFWD[edgeNum], measureOFCurrNbrREV[edgeNum]))

    if numtblocks > 1:
        measureOFCurrNbrEdge_tblock = np.hstack(
            (measureOFCurrNbrFWD_tblock[edgeNum],
             measureOFCurrNbrREV_tblock[edgeNum]))
    else:
        measureOFCurrNbrEdge_tblock = []

    #print '\nCurrent-PrD:{}, Neighbor-PrD:{}'.format(currPrD, nbrPrD)
    #print 'measureOFCurrNbrEdge',measureOFCurrNbrEdge
    #print 'measureOFCurrNbrEdge_tblock',measureOFCurrNbrEdge_tblock

    #return
    #print 'Writing edge-{} data to file'.format(edgeNum)
    myio.fout1(CC_meas_file, [
        'measureOFCurrNbrEdge', 'measureOFCurrNbrEdge_tblock',
        'badNodesPsisBlock'
    ], [measureOFCurrNbrEdge, measureOFCurrNbrEdge_tblock, badNodesPsisBlock])

    #######################################################
    # create empty PD files after each Pickle dump to...
    # ...be used to resume (avoiding corrupt Pickle files):
    progress_fname = os.path.join(p.CC_meas_prog, '%s' % (edgeNum))
    open(progress_fname,
         'a').close()  #create empty file to signify non-corrupted Pickle dump
def op(G, nodeRange, edgeNumRange, *argv):

    nodeEdgeNumRange = [nodeRange, edgeNumRange]

    # Step 1. Compute Optical Flow Vectors
    # Save the optical flow vectors for each psi-movie of individual projection direction
    if p.getOpticalFlow:
        print(
            '\n1.Now computing optical flow vectors for all (selected) PrDs...\n'
        )
        #Optical flow vectors for each psi-movies of each node are saved to disk
        if argv:

            ComputeOpticalFlowPrDAll.op(nodeEdgeNumRange, argv[0])
        else:
            ComputeOpticalFlowPrDAll.op(nodeEdgeNumRange)

    # Step 2. Compute the pairwise edge measurements
    # Save individual edge measurements
    if p.getAllEdgeMeasures:
        print('\n2.Now computing pairwise edge-measurements...\n')
        # measures for creating potentials later on
        # edgeMeasures files for each edge (pair of nodes) are saved to disk
        if argv:
            ComputeMeasureEdgeAll.op(G, nodeEdgeNumRange, argv[0])
        else:
            ComputeMeasureEdgeAll.op(G, nodeEdgeNumRange)

    # Step 3. Extract the pairwise edge measurements
    # to be used for node-potential and edge-potential calculations
    print('\n3.Reading all the edge measurements from disk...')
    # load the measurements file for each edge separately
    #edgeMeasures = np.empty((len(edgeNumRange)),dtype=object)

    #in case there are some nodes/edges for which we do not want to calculate the measures,the number of edges and
    # max edge indices may not match, so use the full G.nEdges as the size of the edgeMeasures. The edges which are not
    # calculated will remain as empty
    edgeMeasures = np.empty((G['nEdges']), dtype=object)
    edgeMeasures_tblock = np.empty((G['nEdges']), dtype=object)
    badNodesPsisBlock = np.zeros((G['nNodes'], p.num_psis))
    for e in edgeNumRange:
        currPrD = G['Edges'][e, 0]
        nbrPrD = G['Edges'][e, 1]
        #print 'Reading Edge:',e,'currPrD:',currPrD,'nbrPrD:',nbrPrD
        CC_meas_file = '{}{}_{}_{}'.format(p.CC_meas_file, e, currPrD, nbrPrD)
        data = myio.fin1(CC_meas_file)
        measureOFCurrNbrEdge = data['measureOFCurrNbrEdge']
        measureOFCurrNbrEdge_tblock = data['measureOFCurrNbrEdge_tblock']
        bpsi = data['badNodesPsisBlock']
        badNodesPsisBlock = badNodesPsisBlock + bpsi
        edgeMeasures[e] = measureOFCurrNbrEdge
        edgeMeasures_tblock[e] = measureOFCurrNbrEdge_tblock

    ###Test 30aug2019
    #print 'before:',edgeMeasures[0][:,:]
    #print 'before:',edgeMeasures[2][:,:]
    scaleRange = [5.0, 30.0]
    edgeMeasures = reScaleLinear(edgeMeasures, edgeNumRange, scaleRange)
    #print 'badNodesPsisBlock',badNodesPsisBlock[0:10,:]
    #print 'after rescale:',edgeMeasures[0][:,:]
    #print 'after rescale:',edgeMeasures[2][:,:]
    #print 'badNodesPsis',badNodesPsis
    #print 'edgeMeasures_tblock',type(edgeMeasures_tblock)
    return edgeMeasures, edgeMeasures_tblock, badNodesPsisBlock
def op(*argv):
    import p
    time.sleep(5)
    set_params.op(1)

    # file i/o
    CC_file = '{}/CC_file'.format(p.CC_dir)
    if os.path.exists(CC_file):
        os.remove(CC_file)

    nodeOutputFile = '{}/comp_psi_sense_nodes.txt'.format(p.CC_dir)
    if os.path.exists(nodeOutputFile):
        os.remove(nodeOutputFile)

    nodeBelFile1 = '{}/nodeAllStateBel_rc1.txt'.format(p.CC_dir)
    if os.path.exists(nodeBelFile1):
        os.remove(nodeBelFile1)

    nodeBelFile2 = '{}/nodeAllStateBel_rc2.txt'.format(p.CC_dir)
    if os.path.exists(nodeBelFile2):
        os.remove(nodeBelFile2)

    CC_graph_file_pruned = '{}_pruned'.format(p.CC_graph_file)
    if os.path.exists(CC_graph_file_pruned):
        os.remove(CC_graph_file_pruned)

    #if OF_CC, OF_CC_fig directory doesn't exist then
    if not os.path.exists(p.CC_OF_dir):
        call(["mkdir", "-p", p.CC_OF_dir])

    trash_list = np.array(p.trash_list)
    #print 'p.trash_list',trash_list
    trash_list_PDs = np.nonzero(trash_list == 1)[0]
    t = 0
    for i in p.trash_list:
        if int(i) == int(1):
            t = t + 1
    if t > 0:
        print 'Number of trash PDs', trash_list_PDs.shape[0]
        CC_graph_file = CC_graph_file_pruned
        G, Gsub = FindCCGraphPruned.op(CC_graph_file)

    else:
        CC_graph_file = p.CC_graph_file
        data = myio.fin1(CC_graph_file)
        G = data['G']
        Gsub = data['Gsub']

    numConnComp = len(G['NodesConnComp'])
    #print "Number of connected component:",numConnComp

    anchorlist = [a[0] for a in p.anch_list]
    anchorlist = [
        a - 1 for a in anchorlist
    ]  # we need labels with 0 index to compare with the node labels in G, Gsub

    print '\nAnchor list:', anchorlist, ', Number of anchor nodes:', len(
        anchorlist), '\n'

    if any(a in anchorlist for a in G['Nodes']):
        if len(anchorlist) + t == G['nNodes']:
            print '\nAll nodes have been manually selected (as anchor nodes). ' \
                 'Reaction-coordinate propagation is not required. Exiting this program.\n'

            psinums = np.zeros((2, G['nNodes']), dtype='int')
            senses = np.zeros((2, G['nNodes']), dtype='int')
            #CC1
            #psinums[0,:]=[a[1]-1 for a in p.anch_list]
            #senses[0,:]=[a[2] for a in p.anch_list]

            for a in p.anch_list:  #for row in anch_list; e.g. [1, 1, -1, 0]
                psinums[0, a[0] - 1] = a[1] - 1
                senses[0, a[0] - 1] = a[2]

            idx = 0
            for t in p.trash_list:  #for row in trash_list; e.g. [36, True] means PD 36 is Trash

                if t == 1:
                    psinums[0, idx] = -1
                    senses[0, idx] = 0

                idx += 1

            #print 'psinums',psinums
            #print 'senses',senses

            #CC2
            #psinums[1,:]=[a[4] for a in p.anch_list] # a[col], whatever column number is in the p.anch_list for CC2
            #senses[2,:]=[a[5] for a in p.anch_list]

            print '\nFind CC: Writing the output to disk...\n'
            p.CC_file = '{}/CC_file'.format(p.CC_dir)
            myio.fout1(p.CC_file, ['psinums', 'senses'], [psinums, senses])

            p.allAnchorPassed = 1

            if argv:
                progress5 = argv[0]
                # We introduce some time delay for proper communication between the execution of this code and the GUI
                for i in xrange(101):
                    time.sleep(0.01)
                    progress5.emit(int(i))

            return
    else:
        print 'Some(or all) of the anchor nodes are NOT in the Graph node list.'
        return

    nodelCsel = []
    edgelCsel = []
    # this list keeps track of the connected component (single nodes included) for which no anchor was provided
    connCompNoAnchor = []
    for i in xrange(numConnComp):
        nodesGsubi = Gsub[i]['originalNodes']
        edgelistGsubi = Gsub[i]['originalEdgeList']
        edgesGsubi = Gsub[i]['originalEdges']
        #print 'Checking connected component ','i=',i,', Gsub[i]',', Original node list:',nodesGsubi,\
        #  'Original edge list:',edgelistGsubi[0],'Original edges:', edgesGsubi, 'No. edges:',len(edgesGsubi)

        #print 'Checking connected component ','i=',i,', Gsub[i]',', Original node list:',nodesGsubi,\
        #    'Original edge list:',edgelistGsubi[0],'Size Edges:',len(edgesGsubi)

        if any(x in anchorlist for x in nodesGsubi):
            #print 'Atleast one anchor node in connected component',i,'is selected.\n'
            nodelCsel.append(nodesGsubi.tolist())
            edgelCsel.append(edgelistGsubi[0])
        else:
            connCompNoAnchor.append(i)
            #print 'Anchor node(s) in connected component',i,' NOT selected.'
            #print '\nIf you proceed without atleast one anchor node for the connected component',i,\
            #    ', all the corresponding nodes will not be assigned with reaction coordinate labels.\n'

    G.update(ConnCompNoAnchor=connCompNoAnchor)
    #print connCompNoAnchor,G['ConnCompNoAnchor']

    #nodeRange = nodelCsel
    #edgeNumRange = edgelCsel
    nodeRange = [y for x in nodelCsel for y in x]  #flatten list another way?
    edgeNumRange = [y for x in edgelCsel
                    for y in x]  #flatten list another way?

    #nodeRange = range(G['nNodes'])
    #edgeNumRange = range(G['nEdges'])
    #nodeRange = [171,172,173,174,175,176]
    #edgeNumRange = [1247,1248,1262,1267]
    #nodeRange = [0,1,2]
    #edgeNumRange = [0,1]
    nodeRange = np.sort(nodeRange)
    edgeNumRange = np.sort(edgeNumRange)
    # adding these two params to the CC graph file *Hstau Aug 19
    data = myio.fin1(CC_graph_file)
    extra = dict(nodeRange=nodeRange, edgeNumRange=edgeNumRange)
    data.update(extra)
    myio.fout2(CC_graph_file, data)
    #print 'Selected graph G nodes and edges in the connected components for which atleast one anchor node were selected:'
    #print 'nodeRange',nodeRange
    #print 'edgeNumRange',edgeNumRange
    # compute all pairwise edge measurements
    # Step 1: compute the optical flow vectors for all prds
    # Step 2: compute the pairwise edge measurements for all psi - psi movies
    # Step 3: Extract the pairwise edge measurements to be used for node-potential and edge-potential calculations
    if argv:
        edgeMeasures, edgeMeasures_tblock, badNodesPsisBlock = ComputePsiMovieEdgeMeasurements.op(
            G, nodeRange, edgeNumRange, argv[0])
    else:
        edgeMeasures, edgeMeasures_tblock, badNodesPsisBlock = ComputePsiMovieEdgeMeasurements.op(
            G, nodeRange, edgeNumRange)
    #print '\nedgeMeasures:\n',edgeMeasures

    # Setup and run the Optimization: Belief propagation
    print '\n4.Running Global optimization to estimate state probability of all nodes ...'

    BPoptions = dict(maxProduct=1,
                     verbose=0,
                     tol=1e-4,
                     maxIter=300,
                     eqnStates=1.0,
                     alphaDamp=1.0)

    #reaction coordinate number rc = 1,2
    psinums = np.zeros((2, G['nNodes']), dtype='int')
    senses = np.zeros((2, G['nNodes']), dtype='int')
    cc = 1
    print('\nFinding CC for Dim:1')
    nodeStateBP_cc1, psinums_cc1, senses_cc1, OptNodeBel_cc1, nodeBelief_cc1 = runGlobalOptimization.op(
        G, BPoptions, edgeMeasures, edgeMeasures_tblock, badNodesPsisBlock, cc)
    psinums[0, :] = psinums_cc1
    senses[0, :] = senses_cc1

    if p.dim == 2:
        cc = 2
        print('\nFinding CC for Dim:2')
        nodeStateBP_cc2, psinums_cc2, senses_cc2, OptNodeBel_cc2, nodeBelief_cc2 = runGlobalOptimization.op(
            G, BPoptions, edgeMeasures, edgeMeasures_tblock, cc,
            nodeStateBP_cc1)
        psinums[1, :] = psinums_cc2
        senses[1, :] = senses_cc2

    # save
    print '\nFind CC: Writing the output to disk...\n'
    p.CC_file = '{}/CC_file'.format(p.CC_dir)
    myio.fout1(p.CC_file, ['psinums', 'senses'], [psinums, senses])

    if p.dim == 1:  # 1 dimension
        node_list = np.empty((G['nNodes'], 4))
        node_list[:, 0] = range(1, G['nNodes'] + 1)  # 1 indexing
        node_list[:, 1] = psinums[0, :] + 1  # indexing 1
        node_list[:, 2] = senses[0, :]
        node_list[:, 3] = OptNodeBel_cc1

        # save the found psinum , senses also as text file
        #node_list is variable name with columns: if dim =1 : (PrD, CC1, S1) + (CC2, S2) if dim =2
        np.savetxt(nodeOutputFile,
                   node_list,
                   fmt='%i\t%i\t%i\t%f',
                   delimiter='\t')

        nodeBels1 = np.empty(
            (nodeBelief_cc1.T.shape[0], nodeBelief_cc1.T.shape[1] + 1))
        nodeBels1[:, 0] = range(1, G['nNodes'] + 1)
        nodeBels1[:, 1:] = nodeBelief_cc1.T
        np.savetxt(nodeBelFile1, nodeBels1, fmt='%f', delimiter='\t')

    elif p.dim == 2:  # 2 dimension
        node_list = np.empty((G['nNodes'], 7))
        node_list[:, 0] = range(1, G['nNodes'] + 1)  # 1 indexing
        node_list[:, 1:3] = (psinums +
                             1).T  # indexing 1 and indices 1:3 means 1 & 2
        node_list[:, 3:5] = senses.T  #indices 3:5 means 3 & 4
        node_list[:, 5] = OptNodeBel_cc1
        node_list[:, 6] = OptNodeBel_cc2

        # save the found psinum , senses also as text file
        #node_list is variable name with columns: if dim =1 : (PrD, CC1, S1) + (CC2, S2) if dim =2
        np.savetxt(nodeOutputFile,
                   node_list,
                   fmt='%i\t%i\t%i\t%i\t%i\t%f\t%f',
                   delimiter='\t')

        nodeBels2 = np.empty(
            (nodeBelief_cc2.T.shape[0], nodeBelief_cc2.T.shape[1] + 1))
        nodeBels2[:, 0] = range(1, G['nNodes'] + 1)
        nodeBels2[:, 1:] = nodeBelief_cc2.T
        np.savetxt(nodeBelFile2, nodeBels2, fmt='%f', delimiter='\t')

    if argv:
        progress5 = argv[0]
        progress5.emit(int(100))
    time.sleep(0.05)