label_size = cu_pixel middle_size = cu_pixel * scale input_cache = np.zeros([cache_size, cu_size * scale, cu_size * scale]) label_cache = np.zeros([cache_size, cu_size, cu_size]) cache_cnt = 0 ####### Configuration ########## fid = 0 h5er = h5Handler(h5_name) x_up = math.floor(width / cu_size - 1) y_up = math.floor(height / cu_size - 1) ####### Configuration ########## print("Input size: ", input_size) if not random_flag: for i in range(f_cnt): Y = read_frame(dec_name, i, height, width) YY = read_frame(gt_name, i, height, width) cv2.imwrite('dec.png', Y) cv2.imwrite('gt.png', YY) for lx in range(0, width, cu_size): for ly in range(0, height, cu_size): rx = lx + cu_size * scale ry = ly + cu_size * scale if rx >= width or ry >= height: continue # import IPython # IPython.embed() input_cache[cache_cnt, :, :] = Y[ly:ly + cu_size * scale, lx:lx + cu_size * scale] if mask_mean:
[f_id, y, x, mode] = line.split() y = int(y) x = int(x) f_id = int(f_id) mode = int(mode) # --------------for debug------------------ #if f_id > 5: # break # --------------for debug------------------ if y == 0 and x == 0: pc = 0 dc = 0 ac = 0 gt_img = read_frame(gt_path, f_id, height, width) dec_img = read_frame(dec_path, f_id, height, width) print(f_id) if x == 0 or y == 0: continue # print([x, y]) input[:, :2048, :, :] = dec_img[x - block_size:x, y - block_size:y + block_size].reshape( [1, 2048, 1, 1]) / 255.0 input[:, 2048:, :, :] = dec_img[x:x + block_size, y - block_size:y].reshape( [1, 1024, 1, 1]) / 255.0 label[...] = gt_img[x:x + block_size, y:y + block_size].reshape( [1, 1024, 1, 1]) / 255.0 # test_img[:32,:64] = input[:,:2048,:,:].reshape([32,64]) # test_img[32:,:32] = input[:,2048:,:,:].reshape([32,32])