texts_data = tokenizer.texts_to_sequences(captions_data) test_n, val_n = int(len(texts_data)*0.2), int(len(texts_data)*0.2) test_data_text, val_data_text, train_data_text = mymodel.split_test_train_function(texts_data,test_n,val_n) test_data_image, val_data_image, train_data_image = mymodel.split_test_train_function(images_data,test_n,val_n) test_fnames,val_fnames, train_fnames = mymodel.split_test_train_function(filenames,test_n,val_n) max_length = np.max([len(text) for text in texts_data]) X_train_text, X_train_image, y_train_text = mymodel.preprocessing(train_data_text,train_data_image,max_length,vocabulary_size) X_val_text, X_val_image, y_val_text = mymodel.preprocessing(val_data_text,val_data_image,max_length,vocabulary_size) model_=mymodel.create_model(X_train_image,max_length,vocabulary_size) hist=mymodel.fit_model(model_,X_train_text, X_train_image, y_train_text,X_val_text, X_val_image, y_val_text) index_word = dict([(index,word) for word, index in tokenizer.word_index.items()]) nkeep = 5 pred_good, pred_bad, bleus = [], [], [] count = 0 for jpgfnm, image_feature, tokenized_text in zip(test_fnames,test_data_image,test_data_text): count += 1 if count % 200 == 0:
# TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np # import matplotlib.pyplot as plt from scipy.io import loadmat import matplotlib.pyplot as plt from loadr import digits_class_names import mymodel from PIL import Image import matplotlib.pyplot as plt print(tf.__version__) class_names = digits_class_names() data_format = 'channels_last' input_shape = [28, 28, 1] checkpoint_path = "training_digits/cp.ckpt" model = mymodel.create_model(input_shape, len(class_names)) model.summary() model.load_weights(checkpoint_path) model.save('my_model.h5')
def __init__(self, file): self.file = file def on_epoch_end(self, epoch, logs={}): self.model.save(self.file) json.dump(logs, open(summary, 'w')) make_checkpoint() #neptune.init('dmpetrov/sandbox') #neptune.create_experiment(name='exp1', params=params) mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = create_model(dropout) opt = keras.optimizers.Adam(learning_rate=lr) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy']) if os.path.exists(weights_file): model.load_weights(weights_file) log_dir = "logs/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1) csv_logger = tf.keras.callbacks.CSVLogger(log_file) start_real = time.time() start_process = time.process_time()