Пример #1
0
 def set_state(self):
     m, p, x = myokit.load(os.path.join(myotest.DIR_DATA, 'lr-1991.mmt'))
     n = 4
     s = myokit.Simulation1d(m, p, n)
     sm = m.state()
     ss = [s.state(x) for x in xrange(n)]
     for si in ss:
         self.assertEqual(sm, si)
     # Test setting a single, global state
     sx = [0] * 8
     self.assertNotEqual(sm, sx)
     s.set_state(sx)
     for i in xrange(n):
         self.assertEqual(sx, s.state(i))
     self.assertEqual(sx * n, s.state())
     s.set_state(sm)
     self.assertEqual(sm * n, s.state())
     # Test setting a single state
     j = 1
     s.set_state(sx, j)
     for i in xrange(n):
         if i == j:
             self.assertEqual(s.state(i), sx)
         else:
             self.assertEqual(s.state(i), sm)
Пример #2
0
    def test_with_progress_reporter(self):
        # Test running with a progress reporter.
        m, p, _ = myokit.load(os.path.join(DIR_DATA, 'lr-1991.mmt'))

        # Test using a progress reporter
        s = myokit.Simulation1d(m, p, ncells=5)
        s.set_step_size(0.05)
        with myokit.PyCapture() as c:
            s.run(110, progress=myokit.ProgressPrinter())
        c = c.text().splitlines()
        self.assertTrue(len(c) > 0)

        # Not a progress reporter
        self.assertRaisesRegex(
            ValueError, 'ProgressReporter', s.run, 5, progress=12)

        # Cancel from reporter
        self.assertRaises(
            myokit.SimulationCancelledError, s.run, 1,
            progress=CancellingReporter(0))
Пример #3
0
    def test_set_default_state(self):
        # Test :meth:`Simulation1d.set_default_state()`.
        m, p, _ = myokit.load(os.path.join(DIR_DATA, 'lr-1991.mmt'))
        n = 4

        s = myokit.Simulation1d(m, p, n)
        self.assertEqual(s.state(), m.state() * n)

        # Test setting a full state
        sx = [0] * 8 * n
        self.assertNotEqual(sx, s.default_state())
        s.set_default_state(sx)
        self.assertEqual(sx, s.default_state())

        # Test setting a single, global state
        sx = [0] * 8
        s.set_default_state(sx)
        self.assertEqual(s.default_state(), sx * n)
        s.set_default_state(m.state())
        self.assertEqual(s.default_state(), m.state() * n)

        # Test setting a single state
        j = 1
        s.set_default_state(sx, j)
        for i in range(n):
            if i == j:
                self.assertEqual(s.default_state(i), sx)
            else:
                self.assertEqual(s.default_state(i), m.state())

        # Invalid cell index
        s.set_default_state(sx, 0)
        self.assertRaises(ValueError, s.set_default_state, sx, -1)
        self.assertRaises(ValueError, s.set_default_state, sx, n)
        self.assertRaises(ValueError, s.default_state, -1)
        self.assertRaises(ValueError, s.default_state, n)
    def test_simple_run(self):
        # Compare the SimulationOpenCL output with Simulation1d output

        # Set up simulations
        m = myokit.load_model(os.path.join(DIR_DATA, 'beeler-1977-model.mmt'))
        m.get('membrane.i_stim.amplitude').set_rhs(-80)
        p = myokit.pacing.blocktrain(period=1000, duration=2, offset=3)
        n = 10
        sa = myokit.Simulation1d(m, p, ncells=n)
        sb = myokit.SimulationOpenCL(m,
                                     p,
                                     ncells=n,
                                     precision=myokit.DOUBLE_PRECISION)

        dt = 0.005
        sa.set_step_size(dt)
        sb.set_step_size(dt)
        sa.set_paced_cells(2)
        sb.set_paced_cells(2)

        tmax = 15
        logvars = [
            'engine.time',
            'membrane.V',
            'engine.pace',
            'isi.Isi',
            'membrane.i_diff',
        ]
        da = sa.run(tmax, log=logvars, log_interval=0.5).npview()
        db = sb.run(tmax, log=logvars, log_interval=0.5).npview()

        # Show results
        if debug:
            import matplotlib.pyplot as plt
            fig = plt.figure(figsize=(12, 9))
            fig.subplots_adjust(0.08, 0.08, 0.98, 0.98, 0.5, 0.3)
            ax = fig.add_subplot(2, 4, 1)
            ax.set_xlabel('Time (ms)')
            ax.set_ylabel('V')
            ax.plot(da.time(), da['membrane.V', 0], '-', lw=2, alpha=0.5)
            ax.plot(da.time(), da['membrane.V', 9], '-', lw=2, alpha=0.5)
            ax.plot(db.time(), db['membrane.V', 0], '--')
            ax.plot(db.time(), db['membrane.V', 9], '--')

            ax = fig.add_subplot(2, 4, 2)
            ax.set_xlabel('Time (ms)')
            ax.set_ylabel('Idiff')
            ax.plot(da.time(), da['membrane.i_diff', 0], '-', lw=2, alpha=0.5)
            ax.plot(da.time(), da['membrane.i_diff', 9], '-', lw=2, alpha=0.5)
            ax.plot(db.time(), db['membrane.i_diff', 0], '--')
            ax.plot(db.time(), db['membrane.i_diff', 9], '--')

            ax = fig.add_subplot(2, 4, 3)
            ax.set_xlabel('Time (ms)')
            ax.set_ylabel('Isi')
            ax.plot(da.time(), da['isi.Isi', 0], '-', lw=2, alpha=0.5)
            ax.plot(da.time(), da['isi.Isi', 9], '-', lw=2, alpha=0.5)
            ax.plot(db.time(), db['isi.Isi', 0], '--')
            ax.plot(db.time(), db['isi.Isi', 9], '--')

            ax = fig.add_subplot(2, 4, 4)
            ax.set_xlabel('Time (ms)')
            ax.set_ylabel('pace')
            ax.plot(da.time(), da['engine.pace'], '-', lw=2, alpha=0.5)
            ax.plot(db.time(), db['engine.pace'], '--')

            ax = fig.add_subplot(2, 4, 5)
            ax.set_xlabel('Time (ms)')
            ax.set_ylabel('V error')
            ax.plot(da.time(), da['membrane.V', 0] - db['membrane.V', 0])
            ax.plot(da.time(), da['membrane.V', 9] - db['membrane.V', 9])

            ax = fig.add_subplot(2, 4, 6)
            ax.set_xlabel('Time (ms)')
            ax.set_ylabel('Idiff error')
            ax.plot(da.time(),
                    da['membrane.i_diff', 0] - db['membrane.i_diff', 0])
            ax.plot(da.time(),
                    da['membrane.i_diff', 9] - db['membrane.i_diff', 9])

            ax = fig.add_subplot(2, 4, 7)
            ax.set_xlabel('Time (ms)')
            ax.set_ylabel('Isi error')
            ax.plot(da.time(), da['isi.Isi', 0] - db['isi.Isi', 0])
            ax.plot(da.time(), da['isi.Isi', 9] - db['isi.Isi', 9])

            ax = fig.add_subplot(2, 4, 8)
            ax.set_xlabel('Time (ms)')
            ax.set_ylabel('pace error')
            ax.plot(da.time(), da['engine.pace'] - db['engine.pace'])
            plt.show()

        e = np.abs(da.time() - db.time())
        self.assertLess(np.max(e), 1e-17)
        e = np.abs(da['engine.pace'] - db['engine.pace'])
        self.assertLess(np.max(e), 1e-17)

        e = np.abs(da['membrane.V', 0] - db['membrane.V', 0])
        self.assertLess(np.max(e), 1e-13)
        e = np.abs(da['membrane.V', 9] - db['membrane.V', 9])
        self.assertLess(np.max(e), 1e-13)

        e = np.abs(da['membrane.i_diff', 0] - db['membrane.i_diff', 0])
        self.assertLess(np.max(e), 1e-13)
        e = np.abs(da['membrane.i_diff', 9] - db['membrane.i_diff', 9])
        self.assertLess(np.max(e), 1e-13)

        e = np.abs(da['isi.Isi', 0] - db['isi.Isi', 0])
        self.assertLess(np.max(e), 1e-13)
        e = np.abs(da['isi.Isi', 9] - db['isi.Isi', 9])
        self.assertLess(np.max(e), 1e-13)
Пример #5
0
    def test_basic(self):
        # Test basic usage.

        # Load model
        m, p, _ = myokit.load(os.path.join(DIR_DATA, 'lr-1991.mmt'))

        # Run a simulation
        ncells = 5
        s = myokit.Simulation1d(m, p, ncells=ncells)
        s.set_step_size(0.05)

        self.assertEqual(s.time(), 0)
        self.assertEqual(s.state(0), m.state())
        self.assertEqual(s.default_state(0), m.state())
        d = s.run(5, log_interval=1)
        self.assertEqual(s.time(), 5)
        self.assertNotEqual(s.state(0), m.state())
        self.assertEqual(s.default_state(0), m.state())

        # Test full state getting and reset
        self.assertEqual(s.default_state(), m.state() * ncells)
        self.assertNotEqual(s.state(), m.state() * ncells)
        s.reset()
        self.assertEqual(s.state(), s.default_state())

        # Test pre updates the default state.
        s.pre(1)
        self.assertNotEqual(s.default_state(0), m.state())

        # Test running without a protocol
        s.set_protocol(None)
        s.run(1)

        # Simulation time can't be negative
        self.assertRaises(ValueError, s.run, -1)

        # Number of cells must be >0
        self.assertRaisesRegex(
            ValueError, 'number of cells', myokit.Simulation1d, m, p, 0)

        # Model must have a membrane potential
        v = m.get('membrane.V')
        v.set_label(None)
        self.assertRaisesRegex(
            ValueError, 'membrane_potential', myokit.Simulation1d, m, p, 5)
        v.set_label('membrane_potential')

        # Model must have a diffusion current
        d = m.binding('diffusion_current')
        d.set_binding(None)
        self.assertRaisesRegex(
            ValueError, 'diffusion_current', myokit.Simulation1d, m, p, 5)

        # Test setting conductance
        s.set_conductance(10)
        self.assertEqual(s.conductance(), 10)
        self.assertRaises(ValueError, s.set_conductance, -1)

        # Test setting paced cells
        s.set_paced_cells(1)
        self.assertEqual(s.paced_cells(), 1)
        self.assertRaises(ValueError, s.set_paced_cells, -1)

        # Test setting step size
        s.set_step_size(0.01)
        self.assertRaises(ValueError, s.set_step_size, 0)

        # Test setting time
        self.assertNotEqual(s.time(), 100)
        s.set_time(100)
        self.assertEqual(s.time(), 100)
Пример #6
0
    def test_against_cvode(self):
        # Compare the Simulation1d output with CVODE output

        # Load model and event with appropriate level/duration
        m, p, _ = myokit.load(os.path.join(DIR_DATA, 'lr-1991.mmt'))
        e = p.head()

        #
        # Make protocol to compare t=0 event implementations
        #
        dt = 0.1    # Note: this is too big to be very accurate
        tmax = 1300
        p = myokit.Protocol()
        p.schedule(level=e.level(), duration=e.duration(), period=600, start=0)
        logvars = ['engine.time', 'membrane.V', 'engine.pace', 'ica.ICa']

        s1 = myokit.Simulation1d(m, p, ncells=1, rl=True)
        s1.set_step_size(dt)
        d1 = s1.run(tmax, logvars, log_interval=dt).npview()

        s2 = myokit.Simulation(m, p)
        s2.set_tolerance(1e-8, 1e-8)
        d2 = s2.run(tmax, logvars, log_interval=dt).npview()

        # Check implementation of logging point selection
        e0 = np.max(np.abs(d1.time() - d2.time()))

        # Check implementation of pacing
        r1 = d1['engine.pace', 0] - d2['engine.pace']
        e1 = np.sum(r1**2)

        # Check membrane potential (will have some error!)
        # Using MRMS from Marsh, Ziaratgahi, Spiteri 2012
        r2 = d1['membrane.V', 0] - d2['membrane.V']
        r2 /= (1 + np.abs(d2['membrane.V']))
        e2 = np.sqrt(np.sum(r2**2) / len(r2))

        # Check logging of intermediary variables
        r3 = d1['ica.ICa', 0] - d2['ica.ICa']
        r3 /= (1 + np.abs(d2['ica.ICa']))
        e3 = np.sqrt(np.sum(r3**2) / len(r3))

        if debug:
            import matplotlib.pyplot as plt
            print('Event at t=0')

            plt.figure()
            plt.suptitle('Time points')
            plt.plot(d1.time(), label='Euler')
            plt.plot(d1.time(), label='CVODE')
            plt.legend()
            print(d1.time()[:7])
            print(d2.time()[:7])
            print(d1.time()[-7:])
            print(d2.time()[-7:])
            print(e0)

            plt.figure()
            plt.suptitle('Pacing signals')
            plt.subplot(2, 1, 1)
            plt.plot(d1.time(), d1['engine.pace', 0], label='Euler')
            plt.plot(d2.time(), d2['engine.pace'], label='CVODE')
            plt.legend()
            plt.subplot(2, 1, 2)
            plt.plot(d1.time(), r1)
            print(e1)

            plt.figure()
            plt.suptitle('Membrane potential')
            plt.subplot(2, 1, 1)
            plt.plot(d1.time(), d1['membrane.V', 0], label='Euler')
            plt.plot(d2.time(), d2['membrane.V'], label='CVODE')
            plt.legend()
            plt.subplot(2, 1, 2)
            plt.plot(d1.time(), r2)
            print(e2)

            plt.figure()
            plt.suptitle('Calcium current')
            plt.subplot(2, 1, 1)
            plt.plot(d1.time(), d1['ica.ICa', 0], label='Euler')
            plt.plot(d2.time(), d2['ica.ICa'], label='CVODE')
            plt.legend()
            plt.subplot(2, 1, 2)
            plt.plot(d1.time(), r2)
            print(e3)

            plt.show()

        self.assertLess(e0, 1e-14)
        self.assertLess(e1, 1e-14)
        self.assertLess(e2, 0.1)   # Note: The step size is really too big here
        self.assertLess(e3, 0.1)

        #
        # Make protocol to compare with event at step-size multiple
        #
        dt = 0.1   # Note: this is too big to be very accurate
        tmax = 1300
        p = myokit.Protocol()
        p.schedule(
            level=e.level(),
            duration=e.duration(),
            period=600,
            start=10)

        logvars = ['engine.time', 'membrane.V', 'engine.pace', 'ica.ICa']

        s1.reset()
        s1.set_protocol(p)
        s1.set_step_size(dt)
        d1 = s1.run(tmax, logvars, log_interval=dt).npview()

        s2.reset()
        s2.set_protocol(p)
        s2.set_tolerance(1e-8, 1e-8)
        d2 = s2.run(tmax, logvars, log_interval=dt).npview()

        # Check implementation of logging point selection
        e0 = np.max(np.abs(d1.time() - d2.time()))

        # Check implementation of pacing
        r1 = d1['engine.pace', 0] - d2['engine.pace']
        e1 = np.sum(r1**2)

        # Check membrane potential (will have some error!)
        # Using MRMS from Marsh, Ziaratgahi, Spiteri 2012
        r2 = d1['membrane.V', 0] - d2['membrane.V']
        r2 /= (1 + np.abs(d2['membrane.V']))
        e2 = np.sqrt(np.sum(r2**2) / len(r2))

        # Check logging of intermediary variables
        r3 = d1['ica.ICa', 0] - d2['ica.ICa']
        r3 /= (1 + np.abs(d2['ica.ICa']))
        e3 = np.sqrt(np.sum(r3**2) / len(r3))

        if debug:
            import matplotlib.pyplot as plt
            print('Event at t=0')

            plt.figure()
            plt.suptitle('Time points')
            plt.plot(d1.time(), label='Euler')
            plt.plot(d1.time(), label='CVODE')
            plt.legend()
            print(d1.time()[:7])
            print(d2.time()[:7])
            print(d1.time()[-7:])
            print(d2.time()[-7:])
            print(e0)

            plt.figure()
            plt.suptitle('Pacing signals')
            plt.subplot(2, 1, 1)
            plt.plot(d1.time(), d1['engine.pace', 0], label='Euler')
            plt.plot(d2.time(), d2['engine.pace'], label='CVODE')
            plt.legend()
            plt.subplot(2, 1, 2)
            plt.plot(d1.time(), r1)
            print(e1)

            plt.figure()
            plt.suptitle('Membrane potential')
            plt.subplot(2, 1, 1)
            plt.plot(d1.time(), d1['membrane.V', 0], label='Euler')
            plt.plot(d2.time(), d2['membrane.V'], label='CVODE')
            plt.legend()
            plt.subplot(2, 1, 2)
            plt.plot(d1.time(), r2)
            print(e2)

            plt.figure()
            plt.suptitle('Calcium current')
            plt.subplot(2, 1, 1)
            plt.plot(d1.time(), d1['ica.ICa', 0], label='Euler')
            plt.plot(d2.time(), d2['ica.ICa'], label='CVODE')
            plt.legend()
            plt.subplot(2, 1, 2)
            plt.plot(d1.time(), r2)
            print(e3)

            plt.show()

        self.assertLess(e0, 1e-14)
        self.assertLess(e1, 1e-14)
        self.assertLess(e2, 0.1)   # Note: The step size is really too big here
        self.assertLess(e3, 0.1)

        #
        # Make protocol to compare with event NOT at step-size multiple
        #
        dt = 0.1   # Note: this is too big to be very accurate
        tmax = 1300
        p = myokit.Protocol()
        p.schedule(
            level=e.level(),
            duration=e.duration(),
            period=600,
            start=1.05)

        logvars = ['engine.time', 'membrane.V', 'engine.pace', 'ica.ICa']

        s1.reset()
        s1.set_protocol(p)
        s1.set_step_size(dt)
        d1 = s1.run(tmax, logvars, log_interval=dt).npview()

        s2.reset()
        s2.set_protocol(p)
        s2.set_tolerance(1e-8, 1e-8)
        d2 = s2.run(tmax, logvars, log_interval=dt).npview()

        # Check implementation of logging point selection
        e0 = np.max(np.abs(d1.time() - d2.time()))

        # Check implementation of pacing
        r1 = d1['engine.pace', 0] - d2['engine.pace']
        e1 = np.sum(r1**2)

        # Check membrane potential (will have some error!)
        # Using MRMS from Marsh, Ziaratgahi, Spiteri 2012
        r2 = d1['membrane.V', 0] - d2['membrane.V']
        r2 /= (1 + np.abs(d2['membrane.V']))
        e2 = np.sqrt(np.sum(r2**2) / len(r2))

        # Check logging of intermediary variables
        r3 = d1['ica.ICa', 0] - d2['ica.ICa']
        r3 /= (1 + np.abs(d2['ica.ICa']))
        e3 = np.sqrt(np.sum(r3**2) / len(r3))

        if debug:
            import matplotlib.pyplot as plt
            print('Event at t=0')

            plt.figure()
            plt.suptitle('Time points')
            plt.plot(d1.time(), label='Euler')
            plt.plot(d1.time(), label='CVODE')
            plt.legend()
            print(d1.time()[:7])
            print(d2.time()[:7])
            print(d1.time()[-7:])
            print(d2.time()[-7:])
            print(e0)

            plt.figure()
            plt.suptitle('Pacing signals')
            plt.subplot(2, 1, 1)
            plt.plot(d1.time(), d1['engine.pace', 0], label='Euler')
            plt.plot(d2.time(), d2['engine.pace'], label='CVODE')
            plt.legend()
            plt.subplot(2, 1, 2)
            plt.plot(d1.time(), r1)
            print(e1)

            plt.figure()
            plt.suptitle('Membrane potential')
            plt.subplot(2, 1, 1)
            plt.plot(d1.time(), d1['membrane.V', 0], label='Euler')
            plt.plot(d2.time(), d2['membrane.V'], label='CVODE')
            plt.legend()
            plt.subplot(2, 1, 2)
            plt.plot(d1.time(), r2)
            print(e2)

            plt.figure()
            plt.suptitle('Calcium current')
            plt.subplot(2, 1, 1)
            plt.plot(d1.time(), d1['ica.ICa', 0], label='Euler')
            plt.plot(d2.time(), d2['ica.ICa'], label='CVODE')
            plt.legend()
            plt.subplot(2, 1, 2)
            plt.plot(d1.time(), r2)
            print(e3)

            plt.show()

        self.assertLess(e0, 1e-14)
        self.assertLess(e1, 1e-14)
        self.assertLess(e2, 0.2)   # Note: The step size is really too big here
        self.assertLess(e3, 0.2)

        #
        # Test again, with event at step multiple, but now without Rush-Larsen
        #
        dt = 0.01   # Note: this is too big to be very accurate
        tmax = 200
        p = myokit.Protocol()
        p.schedule(
            level=e.level(),
            duration=e.duration(),
            period=600,
            start=10)

        logvars = ['engine.time', 'membrane.V', 'engine.pace', 'ica.ICa']
        s1 = myokit.Simulation1d(m, p, ncells=1, rl=False)
        s1.set_step_size(dt)
        d1 = s1.run(tmax, logvars, log_interval=dt).npview()
        s2.reset()
        s2.set_protocol(p)
        s2.set_tolerance(1e-8, 1e-8)
        d2 = s2.run(tmax, logvars, log_interval=dt).npview()

        # Check membrane potential (will have some error!)
        # Using MRMS from Marsh, Ziaratgahi, Spiteri 2012
        r2 = d1['membrane.V', 0] - d2['membrane.V']
        r2 /= (1 + np.abs(d2['membrane.V']))
        e2 = np.sqrt(np.sum(r2**2) / len(r2))
        self.assertLess(e2, 0.05)  # Note: The step size is really too big here

        # Check logging of intermediary variables
        r3 = d1['ica.ICa', 0] - d2['ica.ICa']
        r3 /= (1 + np.abs(d2['ica.ICa']))
        e3 = np.sqrt(np.sum(r3**2) / len(r3))
        self.assertLess(e3, 0.05)
    def test_periodic(self):
        # Test periodic logging.

        m, p, x = myokit.load(os.path.join(DIR_DATA, 'lr-1991.mmt'))
        s = myokit.Simulation1d(m, p, ncells=1)
        self.periodic(s)
Пример #8
0
 def sim_for_periodic(self):
     m, p, x = myokit.load(os.path.join(myotest.DIR_DATA, 'lr-1991.mmt'))
     return myokit.Simulation1d(m, p, ncells=1)