plt.xticks(fontsize=sz - 5)
plt.yticks(fontsize=sz - 5)
plt.subplots_adjust(bottom=.11)
sp_r = fig_r.add_subplot(1, 1, 1)

plt.figure(fig1.number)
plt.subplots_adjust(right=0.99, left=.07)

test_obj = sey_mod

energy = np.linspace(0., E_ts, num=int(1e3))
energy_e = np.linspace(0., E_e, num=int(2e2))
energy_r = np.linspace(0., E_r, num=int(1e3))

for i_ct, ct in enumerate(cos_theta_test):
    thiscol = ms.colorprog(i_ct, len(cos_theta_test))
    label = 'costheta=%.2f' % ct
    sp1.plot(E_impact_eV_test,
             del_true_mat[i_ct, :],
             color=thiscol,
             label=label,
             linewidth=linewid)
    sp_ts.plot(E_impact_eV_test,
               del_true_mat[i_ct, :],
               color=thiscol,
               label=label,
               linewidth=linewid)
    sp2.plot(E_impact_eV_test,
             del_elast_mat[i_ct, :],
             color=thiscol,
             label=label,
sp1 = plt.subplot(3,1,2, sharex=sp0)

# plot simulation data
for coast_ctr, coast_str in enumerate(coast_strs):
    for sey_ctr, sey in enumerate(sey_vect):
        #print beam_snapshot, device_name, sey

        try:
            dip_contribution_per_meter, ob, t_bun = get_simulation_ob('ArcDipReal', sey, coast_str)
            sim_loss_per_hc = dip_contribution_per_meter * l_dip + quad_contribution_per_meter * l_quad + drift_contribution_per_meter * l_drift

            if sey_ctr == 0:
                label = coast_str + ' e9 coasting'
            else:
                label = None
            color_curr = ms.colorprog(sey_ctr, N_sims)

            sp1.semilogy(ob.t/25e-9, ob.Nel_timep, color=color_curr, label=label, ls=coast_linestyle_dict[coast_str])

            if coast_ctr == 0:
                label = sey
            else:
                label = None

            sp2 = plt.subplot(3,1,3, sharex=sp1)
            ms.sciy()
            sp2.plot(t_bun[:-1]/25e-9, sim_loss_per_hc, '.-', color=color_curr, label=label, ls=coast_linestyle_dict[coast_str])

        except IOError as err:
            print('Got:', err)
Пример #3
0
ene_hilleret = hilleret_energy(energy)
popt, pcov = curve_fit(average_true_sec_energy_PDF,
                       energy,
                       ene_hilleret,
                       bounds=(1., 30.))
print('Fitted parameters for average true energy PDF:')
print('p_n:')
print((popt[0:10]))
print('eps_n:')
print((1.634185 / (popt[0:10] - 1)))

plt.figure(2, figsize=(20, 15), facecolor='white')
E_0s = np.array([10., 20., 35., 50., 75., 100., 300., 500.])

for i_E, E_0_curr in enumerate(E_0s):
    thiscol = ms.colorprog(i_E, len(E_0s))
    energy = np.linspace(0.00001, E_0_curr, num=int(1e3))

    sey_mod_FP, impact_management_object, _ = make_it_easier(*popt)

    delta_e, _, delta_ts = sey_mod_FP.yield_fun_furman_pivi(E=E_0_curr,
                                                            costheta=1.)
    delta_ts_prime = delta_ts / (1 - delta_e)

    pdf = average_true_sec_energy_PDF(energy, *popt)
    plt.plot(energy,
             pdf,
             color=thiscol,
             linestyle='--',
             linewidth=linewid,
             label='FP, $E_0 =$ %.0f' % E_0_curr)
Пример #4
0
                             by / len_,
                             len_,
                             pivot='middle')
            bar = plt.colorbar(outp)

        bar.set_ticks([])

        lim = 1.2 * np.max(xx_raw)
        sp.set_xlim(-lim, lim)
        sp.set_ylim(-lim, lim)

        mask = np.abs(y_mpB) < 1e-12
        mask2 = np.abs(x_mpB) < 1e-12

        if angle_ctr == 0:
            color = ms.colorprog(order, 4)
            xx_plot = np.linspace(-1, 1, 1e3)
            sp2.plot(x_mpB[mask], by[mask], '.', label=title, color=color)
            sp2.plot(xx_plot, xx_plot**order, color=color)
            sp3.plot(y_mpB[mask2], bx[mask2], '.', label=title, color=color)
            if order % 2 == 0:
                sp3.plot(xx_plot, np.zeros_like(xx_plot), color=color)
            else:
                sp3.plot(xx_plot, (xx_plot)**order * (-1)**((order - 1) / 2),
                         color=color)

    sp2.set_ylim(-1.1, 1.1)
    sp3.set_ylim(-1.1, 1.1)
    #sp3.legend(loc='upper left', bbox_to_anchor=(1,1))
sp3.legend(loc='upper right', framealpha=0.5)
alpha = 0.9

extract_ene_hist = impact_management_object.extract_energy_distributions(n_rep, E_impact_eV_test, cos_theta_test, mass=me, Nbin_extract_ene=500, factor_ene_dist_max=1.0)

plt.close('all')
ms.mystyle_arial()

fig1 = plt.figure(1, figsize=(3 * 8, 2 * 8))
fig1.set_facecolor('w')
sp1 = fig1.add_subplot(2, 2, 1)
sp2 = fig1.add_subplot(2, 2, 2)
sp3 = fig1.add_subplot(2, 2, 3)
sp4 = fig1.add_subplot(2, 2, 4)

for i_ct, ct in enumerate(cos_theta_test):
    thiscol = ms.colorprog(i_ct, len(cos_theta_test))
    label = 'costheta=%.2f' % ct

    areats = scipy.integrate.simps(extract_ene_hist['true'][:, i_ct], extract_ene_hist['emit_ene_g_hist'])
    areae = scipy.integrate.simps(extract_ene_hist['elast'][:, i_ct], extract_ene_hist['emit_ene_g_hist'])
    arear = scipy.integrate.simps(extract_ene_hist['rediff'][:, i_ct], extract_ene_hist['emit_ene_g_hist'])
    areaab = scipy.integrate.simps(extract_ene_hist['absorb'][:, i_ct], extract_ene_hist['emit_ene_g_hist'])

    sp1.plot(extract_ene_hist['emit_ene_g_hist'], extract_ene_hist['true'][:, i_ct] / areats, color=thiscol, label=label, alpha=alpha, linewidth=linewid, marker='o')
    sp2.plot(extract_ene_hist['emit_ene_g_hist'], extract_ene_hist['elast'][:, i_ct] / areae, color=thiscol, label=label, alpha=alpha, linewidth=linewid, marker='o')
    sp3.plot(extract_ene_hist['emit_ene_g_hist'], extract_ene_hist['rediff'][:, i_ct] / arear, color=thiscol, label=label, alpha=alpha, linewidth=linewid, marker='o')
    sp4.plot(extract_ene_hist['emit_ene_g_hist'], extract_ene_hist['absorb'][:, i_ct] / areaab, color=thiscol, label=label, alpha=alpha, linewidth=linewid, marker='o')

linewid = 3
sp2.plot(0, 0, 'k', label='FP-model PDF', linewidth=linewid)
# sp2.plot(0, 0, 'k', label='ECLOUD-model PDF', linewidth=linewid, linestyle='--')