def simpler(X,Y): '''一元回归分析''' alpha = mytools.correlation(Y,X) * Y.std() / X.std() beta = Y.mean() - X.mean() * alpha class fit(object): '''模型本体''' def __init__(self, alpha, beta): self.alpha = alpha self.beta = beta self.error = (1 - mytools.correlation(Y,X) ** 2) * Y.var() self.express = "y = %.2fx + %.2f" % (alpha, beta) self.goodness = mytools.correlation(Y,X) ** 2 def plot(self): pylab.scatter(X,Y) pylab.show() def pre(self,Xvalue): return self.alpha * Xvalue + self.beta return fit(alpha, beta)
def __init__(self, alpha, beta): self.alpha = alpha self.beta = beta self.error = (1 - mytools.correlation(Y,X) ** 2) * Y.var() self.express = "y = %.2fx + %.2f" % (alpha, beta) self.goodness = mytools.correlation(Y,X) ** 2