Пример #1
0
 def __init__(self, f, dataman, pattern=None):
     self.f = f
     self.dataman = dataman
     self.obtain_data = lambda *args: self.dataman.obtain_data(
         args[0], f, *args[1:])
     self.get_group_time = lambda q: self.obtain_data('time', q)
     groups = myutils.getTimeSortedGroups(f['/'], 'out', key='time')
     groups = [posixpath.basename(group.name) for group in groups]
     if pattern:
         s = set(myutils.walkh5(f, pattern))
         groups = [g for g in groups if g in s]
     if len(groups) == 0:
         raise ValueError('There is no tumor group found in this file!')
     self.groupnames = groups
Пример #2
0
def boxcountTumorVessels(fn, opts):
    items_to_analyze = ['complete', 'withintumor']

    with h5py.File(fn, 'r') as f:
        groups = myutils.getTimeSortedGroups(f['.'], "out")
        for g in groups[-1:]:
            data = {}
            print '%s : %s' % (fn, g.name)
            for item_to_analyze in items_to_analyze:
                calcBoxCounts(data, g['vessels'], item_to_analyze, opts)

            with myutils.MeasurementFile(fn, h5files, opts.prefix) as fdst:
                dstgroup = myutils.require_snapshot_group_(fdst, g)
                fdst.attrs.create('tumorcode_file_type',
                                  data='fractaldim_analyze_bulktum')
                #gdst = fdst.require_snapshot_group_(g)
                #gdst = gdst.recreate_group('fractaldim')
                #myutils.hdf_write_dict_hierarchy(gdst, '.', data)
                myutils.hdf_write_dict_hierarchy(dstgroup, 'fractaldim', data)
Пример #3
0
def getSortedTimeGroupNames(f):
    gg = myutils.getTimeSortedGroups(f['.'], "out")
    return [g.name for g in gg]
Пример #4
0
def plot_many(filenames, pdfpages):
    groups_by_time = defaultdict(list)
    files = [h5py.File(fn, 'r') for fn in filenames]
    for f in files:
        groups = myutils.getTimeSortedGroups(f['.'])
        for g in groups:
            groups_by_time[round(g.attrs['time'])].append(g)

    times = groups_by_time.keys()
    times.sort()
    times = np.asarray(times)

    radius, radius_std = averaged_global((groups_by_time, times),
                                         'geometry/radius')
    volume, volume_std = averaged_global((groups_by_time, times),
                                         'geometry/volume')
    sphere_equiv_radius, sphere_equiv_radius_std = averaged_global(
        (groups_by_time, times), 'geometry/sphere_equiv_radius')
    #sphere_equiv_radius, sphere_equiv_radius_std = averaged_global((groups_by_time, times), 'geometry/cylinder_equiv_radius')
    sphericity, sphericity_std = averaged_global((groups_by_time, times),
                                                 'geometry/sphericity')

    # estimate velocity
    data = np.asarray((times, radius))
    if len(data[0]) > 1:
        from scipy.optimize import leastsq
        func = lambda p, x, y: (x * p[0] + p[1] - y)
        p, success = leastsq(func, (1, 0), args=(data[0], data[1]))
        velocity = p[0]
        print 'estimated velocity: %f' % velocity
        print 'fit params: %s' % str(p)
    else:
        velocity = 0.

    if 1:
        #plot by time
        fig, axes = pyplot.subplots(2,
                                    2,
                                    figsize=(mastersize[0] * 0.5,
                                             mastersize[0] * 0.5))
        mpl_utils.subplots_adjust_abs(
            fig,
            left=mpl_utils.mm_to_inch * 13,
            right=-mpl_utils.mm_to_inch * 5,
            top=-mpl_utils.mm_to_inch * 5,
            bottom=mpl_utils.mm_to_inch * 10,
            hspace=mpl_utils.mm_to_inch * 30,
            wspace=mpl_utils.mm_to_inch * 40,
        )
        axes = axes.ravel()

        def plt_rad(ax):
            ax.set(ylabel='[mm]', xlabel='t [h]')
            mpl_utils.errorbar(ax,
                               times,
                               1.e-3 * radius,
                               yerr=1.e-3 * radius_std,
                               label='r',
                               lw=0.,
                               marker='x',
                               color='k',
                               markersize=5.)
            label = u'$r_0 + v_{fit} t$\n$v_{fit} = %s$ [\u03BCm/h]' % f2s(
                velocity)
            ax.plot(times,
                    1.e-3 * (p[1] + p[0] * times),
                    label=label,
                    color='r')
            ax.legend()
            #ax.text(0.6, 0.2, r'$v_{fit} = %s$' % f2s(velocity), transform = ax.transAxes)

        def plt_vol(ax):
            ax.set(ylabel='volume', xlabel='t [h]')
            ax.errorbar(times, 1.e-9 * volume, yerr=1.e-9 * volume_std)

        def plt_sprad(ax):
            ax.set(ylabel='sphere equiv. radius', xlabel='t [h]')
            ax.errorbar(times,
                        1.e-3 * sphere_equiv_radius,
                        yerr=1.e-3 * sphere_equiv_radius_std)

        def plt_sphereicity(ax):
            ax.set(ylabel='sphericity', xlabel='t [h]')
            ax.errorbar(times, sphericity, yerr=sphericity_std)

        for ax, func in zip(axes,
                            [plt_rad, plt_vol, plt_sprad, plt_sphereicity]):
            l = MaxNLocator(nbins=4)
            ax.xaxis.set_major_locator(l)
            func(ax)

        pdfpages.savefig(fig)

    times = times[0::2]
    radial = averaged_radial((groups_by_time, times), 'vs_dr', [
        'phi_tumor', 'mvd', 'radius', 'shearforce', 'flow', 'sources', 'vel',
        'oxy', 'maturation'
    ])
    bins = np.asarray(groups_by_time[times[0]][0]['radial/vs_dr/bins'])
    bins *= 1. / 1000.
    xlim = -1.5, 1.0
    mask = np.logical_and(bins < xlim[1], bins >= xlim[0])

    def plot_times(ax, name, **kwargs):
        f = kwargs.pop('value_prefactor', 1.)
        colors = 'rgbmk'
        markers = 'os<>d'
        for i, t in enumerate(times):
            avg, std = radial[name, t]
            avg, std = avg[mask], std[mask]
            #ax.errorbar(bins[mask], f*avg, yerr=f*std, label = 't = %s' % f2s(t), **kwargs)
            mpl_utils.errorbar(ax,
                               bins[mask],
                               f * avg,
                               yerr=f * std,
                               label='t = $%s$' % f2s(t),
                               marker=markers[i],
                               color=colors[i],
                               every=5,
                               **kwargs)

    def text1(ax, txt):
        ax.text(0.95, 0.9, txt, ha="right", transform=ax.transAxes)

    def text2(ax, txt):
        ax.text(0.01, 0.9, txt, ha="left", transform=ax.transAxes)

    def mkfig(nrows, ncols):
        fig, axes = mpl_utils.subplots_abs_mm(
            (mastersize[0] / mpl_utils.mm_to_inch * 0.5 * ncols,
             mastersize[0] / mpl_utils.mm_to_inch * 0.2 * nrows), nrows, ncols,
            10, 20, a4size[0] / mpl_utils.mm_to_inch * 0.38,
            a4size[0] / mpl_utils.mm_to_inch * 0.16, 15, 5)
        return fig, axes


#  fig, axes = pyplot.subplots(4, 2, figsize = (mastersize[0], mastersize[0]*0.25*4.))
#  mpl_utils.subplots_adjust_abs(fig, left = mpl_utils.mm_to_inch*20,
#                                right = -mpl_utils.mm_to_inch*10,
#                                top  = -mpl_utils.mm_to_inch*5,
#                                bottom = mpl_utils.mm_to_inch*10,
#                                hspace = mpl_utils.mm_to_inch*30,)

    def plt_mvd(ax):
        # mvd can be written as N^3 * L0/N * 3 / V = (V=L0^3) ... = N^2 / L0^2
        ax.set(ylabel=ur'$\times 10^3$ [\u03BCm$^{-2}$]', xlim=xlim)
        plot_times(ax, 'mvd', value_prefactor=1e3)
        text1(ax, r'$L/V$')
        ax.legend(loc=mpl_utils.loc.lower_left, frameon=True)

    def plt_rad(ax):
        ax.set(ylabel=ur'[\u03BCm]', xlim=xlim)
        plot_times(ax, 'radius')
        text1(ax, r'$r_v$')

    def plt_vel(ax):
        ax.set(ylabel=ur'[\u03BCm/h]', xlim=xlim)
        text1(ax, r'$v_\phi$')
        plot_times(ax, 'vel')

    def plt_tum(ax):
        ax.set(ylabel=ur'', xlim=xlim, ylim=(-0.1, 0.7))
        plot_times(ax, 'phi_tumor')
        text1(ax, r'$\phi_t$')

    def plt_oxy(ax):
        ax.set(ylabel=ur'', xlim=xlim)
        plot_times(ax, 'oxy')
        text1(ax, r'$c_o$')

    def plt_sf(ax):
        ax.set(ylabel=ur'[Pa]', xlim=xlim)
        plot_times(ax, 'shearforce', value_prefactor=1e3)
        text1(ax, r'$f_v$')

    def plt_wall(ax):
        ax.set(ylabel=ur'[\u03BCm]', xlim=xlim)
        plot_times(ax, 'maturation')
        text1(ax, r'$w_v$')

    def plt_qv(ax):
        ax.set(ylabel=ur'[\u03BCm]', xlim=xlim)
        ax.set(xlabel=ur'$\theta$ [mm]')
        plot_times(ax, 'flow')
        text1(ax, r'$q_v$')

    fig, axes = mkfig(3, 2)
    plt_mvd(axes[0, 0])
    plt_rad(axes[0, 1])
    plt_vel(axes[1, 0])
    plt_oxy(axes[1, 1])
    plt_wall(axes[2, 0])
    plt_sf(axes[2, 1])

    for ax in axes[2, :]:
        ax.set(xlabel=ur'$\theta$ [mm]')

    axes = axes.ravel()
    for i, ax in enumerate(axes):
        ax.grid(linestyle=':', linewidth=0.5, color=gridcolor)
        mpl_utils.add_crosshair(ax, (0, 0), color=gridcolor)
        if not ax.get_xlabel():
            ax.set(xticklabels=[])
        text2(ax, '(%s)' % 'abcdefghij'[i])

    pdfpages.savefig(fig)
Пример #5
0
    for i, ax in enumerate(axes):
        ax.grid(linestyle=':', linewidth=0.5, color=gridcolor)
        mpl_utils.add_crosshair(ax, (0, 0), color=gridcolor)
        if not ax.get_xlabel():
            ax.set(xticklabels=[])
        text2(ax, '(%s)' % 'abcdefghij'[i])

    pdfpages.savefig(fig)

if __name__ == '__main__':
    filenames = sys.argv[1:]
    if not myutils.is_measurement_file(filenames[0]):
        for fn in filenames:
            with h5py.File(fn, 'r') as f:
                with myutils.MeasurementFile(f, h5files) as fdst:
                    grps = myutils.getTimeSortedGroups(f['.'], "out")
                    for grp in grps:
                        dstgroup = myutils.require_snapshot_group_(fdst, grp)
                        generate_data(grp, dstgroup)
    else:
        rc = matplotlib.rc
        rc(
            'figure', **{
                'subplot.left': 0.15,
                'subplot.right': 1. - 0.15,
                'subplot.bottom': 0.2,
                'subplot.top': 1. - 0.1,
                'subplot.wspace': 0.2,
                'subplot.hspace': 0.2
            })
        fnmeasure = commonOutputName(filenames)
Пример #6
0
 def __init__(self, name):
     f = h5py.File(name + '.h5', 'r')
     self.ld = ld = krebsutils.read_lattice_data_from_hdf(f['field_ld'])
     self.groups = myutils.getTimeSortedGroups(f['.'], 'out')
     self.f = f