Пример #1
0
for i in range(len(test)):
    y_test.append(test[i][0])
    X_test.append(test[i][1:])


# Instantiate the Naive Bayes classifier model made from scratch

model = NaiveBayesClassifier()

# Fit the model

model.fit(X_train, y_train)

# Make predictions

y_pred = model.predict(X_test)

# Print the accuracy of the model

print("NaiveBayesClassifier accuracy: {0:.3f}".format(model.accuracy(y_test, y_pred)))


# Instantiate the Gaussian Naive Bayes classifier model from Scikit-learn

model = GaussianNB()

# Fit the model

model.fit(X_train, y_train)

# Make predictions
Пример #2
0
import pandas

from naive_bayes_classifier import NaiveBayesClassifier

df = pandas.read_csv("weather.csv", sep=";")

naive_bayes = NaiveBayesClassifier(df, 0.6)
naive_bayes.train_algorithm()

accuracy = naive_bayes.test_algorithm()
print("Algorithm Accuracy : " + str(accuracy) + " %")
tuple_data = ('Overcast', 'Hot', 'Normal', True)
prediction = naive_bayes.predict(tuple_data)
print("Prediction for " + str(tuple_data) + " is " + prediction)
Пример #3
0
    NB_classifier = NaiveBayesClassifier()

    spam_train = spam_data[:int(len(spam_data) * 2 / 3)]
    spam_test = spam_data[int(len(spam_data) * 2 / 3):]

    legit_train = legit_data[:int(len(legit_data) * 2 / 3)]
    legit_test = legit_data[int(len(legit_data) * 2 / 3):]

    NB_classifier.train(spam_train, legit_train)

    spam_accuracy = 0
    legit_accuracy = 0

    for text in spam_test:
        prediction = NB_classifier.predict(text)
        spam_accuracy += prediction
    spam_accuracy /= len(spam_test)

    for text in legit_test:
        prediction = NB_classifier.predict(text)
        legit_accuracy += 1 - prediction
    legit_accuracy /= len(legit_test)

    print("Spam Text prediction accuracy:", spam_accuracy)
    print("Legit Text prediction accuracy:", legit_accuracy)

    text_spam = "Win Free Money now! Apply today and get cash!"
    text_legit = "A usual day without anything interesting"

    print(text_spam, NB_classifier.predict(text_spam))