Пример #1
0
def main():
    args = parse_args()
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    load_config(cfg, args.config)
    logger = Logger(-1, use_tensorboard=False)
    predictor = Predictor(cfg, args.model, logger, device='cuda:0')
    logger.log('Press "Esc", "q" or "Q" to exit.')
    if args.demo == 'image':
        if os.path.isdir(args.path):
            files = get_image_list(args.path)
        else:
            files = [args.path]
        files.sort()
        for image_name in files:
            meta, res = predictor.inference(image_name)
            predictor.visualize(res, meta, cfg.class_names, 0.35)
            ch = cv2.waitKey(0)
            if ch == 27 or ch == ord('q') or ch == ord('Q'):
                break
    elif args.demo == 'video' or args.demo == 'webcam':
        cap = cv2.VideoCapture(args.path if args.demo ==
                               'video' else args.camid)
        while True:
            ret_val, frame = cap.read()
            meta, res = predictor.inference(frame)
            predictor.visualize(res, meta, cfg.class_names, 0.35)
            ch = cv2.waitKey(1)
            if ch == 27 or ch == ord('q') or ch == ord('Q'):
                break
Пример #2
0
def main():
    global predictor
    global conn
    server = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    server.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)
    server.bind(('127.0.0.1',8000))
    server.listen(5)
    print("waiting msg ...")
    conn, clint_add = server.accept()

    args = parse_args()
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    load_config(cfg, args.config)
    logger = Logger(-1, use_tensorboard=False)
    predictor = Predictor(cfg, args.model, logger, device='cuda:0')
    logger.log('Press "Esc", "q" or "Q" to exit.')
    if args.demo == 'image':
        if os.path.isdir(args.path):
            files = get_image_list(args.path)
        else:
            files = [args.path]
        files.sort()
        for image_name in files:
            meta, res = predictor.inference(image_name)
            predictor.visualize(res, meta, cfg.class_names, 0.35)
            ch = cv2.waitKey(0)
            if ch == 27 or ch == ord('q') or ch == ord('Q'):
                break
    elif args.demo == 'video' or args.demo == 'webcam':
        rospy.init_node('listener', anonymous=True)
        detime = time.time()
        rospy.Subscriber("/camera/color/image_raw", Image, callback)
        rospy.spin()
Пример #3
0
def main(args):
    load_config(cfg, args.config)
    local_rank = -1
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    cfg.defrost()
    timestr = datetime.datetime.now().__format__("%Y%m%d%H%M%S")
    cfg.save_dir = os.path.join(cfg.save_dir, timestr)
    mkdir(local_rank, cfg.save_dir)
    logger = NanoDetLightningLogger(cfg.save_dir)

    assert args.task in ["val", "test"]
    cfg.update({"test_mode": args.task})

    logger.info("Setting up data...")
    val_dataset = build_dataset(cfg.data.val, args.task)
    val_dataloader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=cfg.device.batchsize_per_gpu,
        shuffle=False,
        num_workers=cfg.device.workers_per_gpu,
        pin_memory=True,
        collate_fn=naive_collate,
        drop_last=False,
    )
    evaluator = build_evaluator(cfg.evaluator, val_dataset)

    logger.info("Creating model...")
    task = TrainingTask(cfg, evaluator)

    ckpt = torch.load(args.model)
    if "pytorch-lightning_version" not in ckpt:
        warnings.warn(
            "Warning! Old .pth checkpoint is deprecated. "
            "Convert the checkpoint with tools/convert_old_checkpoint.py ")
        ckpt = convert_old_model(ckpt)
    task.load_state_dict(ckpt["state_dict"])

    if cfg.device.gpu_ids == -1:
        logger.info("Using CPU training")
        accelerator, devices = "cpu", None
    else:
        accelerator, devices = "gpu", cfg.device.gpu_ids

    trainer = pl.Trainer(
        default_root_dir=cfg.save_dir,
        accelerator=accelerator,
        devices=devices,
        log_every_n_steps=cfg.log.interval,
        num_sanity_val_steps=0,
        logger=logger,
    )
    logger.info("Starting testing...")
    trainer.test(task, val_dataloader)
Пример #4
0
def main():
    args = parse_args()
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    load_config(cfg, args.config)
    logger = Logger(-1, use_tensorboard=False)
    predictor = Predictor(cfg, args.model, logger, device='cuda:0')
    logger.log('Press "Esc", "q" or "Q" to exit.')
    fpsReport = 0
    font = cv2.FONT_HERSHEY_SIMPLEX
    timeStamp = time.time()
    if args.demo == 'image':
        if os.path.isdir(args.path):
            files = get_image_list(args.path)
        else:
            files = [args.path]
        files.sort()
        for image_name in files:
            meta, res = predictor.inference(image_name)
            predictor.visualize(res, meta, cfg.class_names, 0.35)
            ch = cv2.waitKey(0)
            if ch == 27 or ch == ord('q') or ch == ord('Q'):
                break
    elif args.demo == 'video' or args.demo == 'webcam':
        cap = cv2.VideoCapture(args.path if args.demo ==
                               'video' else args.camid)
        while True:
            ret_val, frame = cap.read()
            meta, res = predictor.inference(frame)
            predictor.visualize(res, meta, cfg.class_names, 0.35)
            dt = time.time() - timeStamp
            fps = 1 / dt
            fpsReport = .9 * fpsReport + .1 * fps
            print("FPS: " + str(fpsReport))
            timeStamp = time.time()
            ch = cv2.waitKey(1)
            if ch == 27 or ch == ord('q') or ch == ord('Q'):
                break
    elif args.demo == 'csicam':
        cap = cv2.VideoCapture(gstreamer_pipeline(), cv2.CAP_GSTREAMER)
        while True:
            ret_val, frame = cap.read()
            meta, res = predictor.inference(frame)
            predictor.visualize(res, meta, cfg.class_names, 0.35)
            dt = time.time() - timeStamp
            fps = 1 / dt
            fpsReport = .9 * fpsReport + .1 * fps
            print("FPS: " + str(fpsReport))
            timeStamp = time.time()
            ch = cv2.waitKey(1)
            if ch == 27 or ch == ord('q') or ch == ord('Q'):
                break
Пример #5
0
def run():
    args = parse_args()

    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    # ----- load and parse config file
    load_config(cfg, args.config)

    # ----- set logger
    logger = Logger(-1, use_tensorboard=False)

    # ----- set device
    device = torch_utils.select_device(args.device,
                                       apex=False,
                                       batch_size=None)

    # ----- set predictor
    predictor = Predictor(cfg, args.model, logger, device=device)  # 'cuda:0'
    logger.log('Press "Esc", "q" or "Q" to exit.')

    if args.demo == 'image':
        if os.path.isdir(args.path):
            files = get_image_list(args.path)
        else:
            files = [args.path]

        files.sort()
        for img_path in files:
            meta, res_dict = predictor.inference(img_path)

            predictor.visualize(img_path, res_dict, meta, cfg.class_names,
                                0.35)

            ch = cv2.waitKey(0)
            if ch == 27 or ch == ord('q') or ch == ord('Q'):
                break

    elif args.demo == 'video' or args.demo == 'webcam':
        cap = cv2.VideoCapture(args.path if args.demo ==
                               'video' else args.camid)
        while True:
            ret_val, frame = cap.read()

            # ----- inference
            meta, res_dict = predictor.inference(frame)
            # -----

            predictor.visualize(res_dict, meta, cfg.class_names, 0.35)

            ch = cv2.waitKey(1)
            if ch == 27 or ch == ord('q') or ch == ord('Q'):
                break
Пример #6
0
def main(args):
    load_config(cfg, args.config)
    if cfg.model.arch.head.num_classes != len(cfg.class_names):
        raise ValueError('cfg.model.arch.head.num_classes must equal len(cfg.class_names),but got {} and {}'.format(cfg.model.arch.head.num_classes,len(cfg.class_names)))
    local_rank = int(args.local_rank)
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    mkdir(local_rank, cfg.save_dir)
    logger = Logger(local_rank, cfg.save_dir)

    if args.seed is not None:
        logger.log('Set random seed to {}'.format(args.seed))
        pl.seed_everything(args.seed)

    logger.log('Setting up data...')
    train_dataset = build_dataset(cfg.data.train, 'train')
    val_dataset = build_dataset(cfg.data.val, 'test')

    evaluator = build_evaluator(cfg, val_dataset)

    train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=cfg.device.batchsize_per_gpu,
                                                   shuffle=True, num_workers=cfg.device.workers_per_gpu,
                                                   pin_memory=True, collate_fn=collate_function, drop_last=True)
    # TODO: batch eval
    val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=1, shuffle=False,
                                                 num_workers=cfg.device.workers_per_gpu,
                                                 pin_memory=True, collate_fn=collate_function, drop_last=True)

    logger.log('Creating model...')
    task = TrainingTask(cfg, evaluator)

    if 'load_model' in cfg.schedule:
        ckpt = torch.load(cfg.schedule.load_model)
        if 'pytorch-lightning_version' not in ckpt:
            warnings.warn('Warning! Old .pth checkpoint is deprecated. '
                          'Convert the checkpoint with tools/convert_old_checkpoint.py ')
            ckpt = convert_old_model(ckpt)
        task.load_state_dict(ckpt['state_dict'], strict=False)

    model_resume_path = os.path.join(cfg.save_dir, 'model_last.ckpt') if 'resume' in cfg.schedule else None

    trainer = pl.Trainer(default_root_dir=cfg.save_dir,
                         max_epochs=cfg.schedule.total_epochs,
                         gpus=cfg.device.gpu_ids,
                         check_val_every_n_epoch=cfg.schedule.val_intervals,
                         accelerator='ddp',
                         log_every_n_steps=cfg.log.interval,
                         num_sanity_val_steps=0,
                         resume_from_checkpoint=model_resume_path,
                         callbacks=[ProgressBar(refresh_rate=0)]  # disable tqdm bar
                         )

    trainer.fit(task, train_dataloader, val_dataloader)
Пример #7
0
def main(args):
    warnings.warn(
        'Warning! Old testing code is deprecated and will be deleted '
        'in next version. Please use tools/test.py')
    load_config(cfg, args.config)
    local_rank = -1
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    cfg.defrost()
    timestr = datetime.datetime.now().__format__('%Y%m%d%H%M%S')
    cfg.save_dir = os.path.join(cfg.save_dir, timestr)
    cfg.freeze()
    mkdir(local_rank, cfg.save_dir)
    logger = Logger(local_rank, cfg.save_dir)

    logger.log('Creating model...')
    model = build_model(cfg.model)

    logger.log('Setting up data...')
    val_dataset = build_dataset(cfg.data.val, args.task)
    val_dataloader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=cfg.device.batchsize_per_gpu,
        shuffle=False,
        num_workers=cfg.device.workers_per_gpu,
        pin_memory=True,
        collate_fn=collate_function,
        drop_last=True)
    trainer = build_trainer(local_rank, cfg, model, logger)
    cfg.schedule.update({'load_model': args.model})
    trainer.load_model(cfg)
    evaluator = build_evaluator(cfg, val_dataset)
    logger.log('Starting testing...')
    with torch.no_grad():
        results, val_loss_dict = trainer.run_epoch(0,
                                                   val_dataloader,
                                                   mode=args.task)
    if args.task == 'test':
        res_json = evaluator.results2json(results)
        json_path = os.path.join(cfg.save_dir,
                                 'results{}.json'.format(timestr))
        json.dump(res_json, open(json_path, 'w'))
    elif args.task == 'val':
        eval_results = evaluator.evaluate(results,
                                          cfg.save_dir,
                                          rank=local_rank)
        if args.save_result:
            txt_path = os.path.join(cfg.save_dir,
                                    "eval_results{}.txt".format(timestr))
            with open(txt_path, "a") as f:
                for k, v in eval_results.items():
                    f.write("{}: {}\n".format(k, v))
Пример #8
0
def main(args):
    warnings.warn('Warning! Old training code is deprecated and will be deleted '
                  'in next version. Please use tools/train.py')
    load_config(cfg, args.config)
    local_rank = int(args.local_rank)
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    mkdir(local_rank, cfg.save_dir)                             # mkdir用@rank_filter包裹,主进程创建save_dir
    logger = Logger(local_rank, cfg.save_dir)
    if args.seed is not None:
        logger.log('Set random seed to {}'.format(args.seed))
        init_seeds(args.seed)

    logger.log('Creating model...')
    model = build_model(cfg.model)

    logger.log('Setting up data...')
    train_dataset = build_dataset(cfg.data.train, 'train')
    val_dataset = build_dataset(cfg.data.val, 'test')

    if len(cfg.device.gpu_ids) > 1:
        print('rank = ', local_rank)
        num_gpus = torch.cuda.device_count()
        torch.cuda.set_device(local_rank % num_gpus)
        dist.init_process_group(backend='nccl')
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
        train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=cfg.device.batchsize_per_gpu,
                                                       num_workers=cfg.device.workers_per_gpu, pin_memory=True,
                                                       collate_fn=collate_function, sampler=train_sampler,
                                                       drop_last=True)
    else:
        train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=cfg.device.batchsize_per_gpu,
                                                       shuffle=True, num_workers=cfg.device.workers_per_gpu,
                                                       pin_memory=True, collate_fn=collate_function, drop_last=True)

    val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=cfg.device.batchsize_per_gpu,
                                                 shuffle=False, num_workers=cfg.device.workers_per_gpu,
                                                 pin_memory=True, collate_fn=collate_function, drop_last=True)

    trainer = build_trainer(local_rank, cfg, model, logger)

    if 'load_model' in cfg.schedule:
        trainer.load_model(cfg)
    if 'resume' in cfg.schedule:
        trainer.resume(cfg)

    evaluator = build_evaluator(cfg, val_dataset)

    logger.log('Starting training...')
    trainer.run(train_dataloader, val_dataloader, evaluator)
Пример #9
0
def main():
    args = parse_args()
    local_rank = 0
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    load_config(cfg, args.config)
    logger = Logger(local_rank, use_tensorboard=False)
    predictor = Predictor(cfg, args.model, logger, device='cuda:0')
    logger.log('Press "Esc", "q" or "Q" to exit.')
    current_time = time.localtime()
    if args.demo == 'image':
        if os.path.isdir(args.path):
            files = get_image_list(args.path)
        else:
            files = [args.path]
        files.sort()
        for image_name in files:
            meta, res = predictor.inference(image_name)
            result_image = predictor.visualize(res, meta, cfg.class_names, 0.35)
            if args.save_result:
                save_folder = os.path.join(cfg.save_dir, time.strftime("%Y_%m_%d_%H_%M_%S", current_time))
                mkdir(local_rank, save_folder)
                save_file_name = os.path.join(save_folder, os.path.basename(image_name))
                cv2.imwrite(save_file_name, result_image)
            ch = cv2.waitKey(0)
            if ch == 27 or ch == ord('q') or ch == ord('Q'):
                break
    elif args.demo == 'video' or args.demo == 'webcam':
        cap = cv2.VideoCapture(args.path if args.demo == 'video' else args.camid)
        width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)  # float
        height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)  # float
        fps = cap.get(cv2.CAP_PROP_FPS)
        save_folder = os.path.join(cfg.save_dir, time.strftime("%Y_%m_%d_%H_%M_%S", current_time))
        mkdir(local_rank, save_folder)
        save_path = os.path.join(save_folder, args.path.split('/')[-1]) if args.demo == 'video' else os.path.join(save_folder, 'camera.mp4')
        print(f'save_path is {save_path}')
        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (int(width), int(height)))
        while True:
            ret_val, frame = cap.read()
            if ret_val:
                meta, res = predictor.inference(frame)
                result_frame = predictor.visualize(res, meta, cfg.class_names, 0.35)
                if args.save_result:
                    vid_writer.write(result_frame)
                ch = cv2.waitKey(1)
                if ch == 27 or ch == ord('q') or ch == ord('Q'):
                    break
            else:
                break
Пример #10
0
    def __init__(self, model_path, cfg_path, *args, **kwargs):
        from nanodet.model.arch import build_model
        from nanodet.util import Logger, cfg, load_config, load_model_weight

        super(NanoDetTorch, self).__init__(*args, **kwargs)
        print(f'Using PyTorch as inference backend')
        print(f'Using weight: {model_path}')

        # load model
        self.model_path = model_path
        self.cfg_path = cfg_path
        load_config(cfg, cfg_path)
        self.logger = Logger(-1, cfg.save_dir, False)
        self.model = build_model(cfg.model)
        checkpoint = self.torch.load(model_path, map_location=lambda storage, loc: storage)
        load_model_weight(self.model, checkpoint, self.logger)
Пример #11
0
def main(args):
    load_config(cfg, args.config)
    local_rank = int(args.local_rank)
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    mkdir(local_rank, cfg.save_dir)
    logger = Logger(local_rank, cfg.save_dir)
    # TODO: replace with lightning random seed
    if args.seed is not None:
        logger.log('Set random seed to {}'.format(args.seed))
        init_seeds(args.seed)

    logger.log('Setting up data...')
    train_dataset = build_dataset(cfg.data.train, 'train')
    val_dataset = build_dataset(cfg.data.val, 'test')

    evaluator = build_evaluator(cfg, val_dataset)

    logger.log('Creating model...')
    task = TrainingTask(cfg, evaluator, logger)

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=cfg.device.batchsize_per_gpu,
        shuffle=True,
        num_workers=cfg.device.workers_per_gpu,
        pin_memory=True,
        collate_fn=collate_function,
        drop_last=True)
    # TODO: batch eval
    val_dataloader = torch.utils.data.DataLoader(val_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=1,
                                                 pin_memory=True,
                                                 collate_fn=collate_function,
                                                 drop_last=True)

    trainer = pl.Trainer(default_root_dir=cfg.save_dir,
                         max_epochs=cfg.schedule.total_epochs,
                         gpus=cfg.device.gpu_ids,
                         check_val_every_n_epoch=cfg.schedule.val_intervals,
                         accelerator='ddp',
                         log_every_n_steps=cfg.log.interval,
                         num_sanity_val_steps=0)

    trainer.fit(task, train_dataloader, val_dataloader)
Пример #12
0
def test_logger():
    tmp_dir = tempfile.TemporaryDirectory()
    logger = NanoDetLightningLogger(tmp_dir.name)

    writer = logger.experiment
    assert isinstance(writer, SummaryWriter)

    logger.info("test")

    logger.log_hyperparams({"lr": 1})

    logger.log_metrics({"mAP": 30.1}, 1)

    load_config(cfg, "./config/legacy_v0.x_configs/nanodet-m.yml")
    logger.dump_cfg(cfg)

    logger.finalize(None)
Пример #13
0
    def getDownloadModelUrl(self, dmtvid):
        # 查询该版本
        modelVersion = detectModelTrainVersion.objects(
            dmtvid=int(dmtvid),
            state=ConstantUtils.DATA_STATUS_ACTIVE).first()
        if modelVersion[
                "inferencePlatform"] == ConstantUtils.MODEL_PLATFORM_SERVER:
            return modelVersion.ckptModelSavePath
        elif modelVersion[
                "inferencePlatform"] == ConstantUtils.MODEL_PLATFORM_LITE:
            # 获取该项目的weights路径
            cfg_path = r"data/nanodet-self.yml"
            model_path = str(modelVersion["ckptModelSavePath"])

            load_config(cfg, cfg_path)

            return liteConveter.convertToNCNN_Android_model(cfg, model_path)
Пример #14
0
def main(args):
    load_config(cfg, args.config)
    local_rank = -1
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    cfg.defrost()
    timestr = datetime.datetime.now().__format__('%Y%m%d%H%M%S')
    cfg.save_dir = os.path.join(cfg.save_dir, timestr)
    mkdir(local_rank, cfg.save_dir)
    logger = Logger(local_rank, cfg.save_dir)

    assert args.task in ['val', 'test']
    cfg.update({'test_mode': args.task})

    logger.log('Setting up data...')
    val_dataset = build_dataset(cfg.data.val, args.task)
    val_dataloader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=cfg.device.batchsize_per_gpu,
        shuffle=False,
        num_workers=cfg.device.workers_per_gpu,
        pin_memory=True,
        collate_fn=collate_function,
        drop_last=True)
    evaluator = build_evaluator(cfg, val_dataset)

    logger.log('Creating model...')
    task = TrainingTask(cfg, evaluator)

    ckpt = torch.load(args.model)
    if 'pytorch-lightning_version' not in ckpt:
        warnings.warn(
            'Warning! Old .pth checkpoint is deprecated. '
            'Convert the checkpoint with tools/convert_old_checkpoint.py ')
        ckpt = convert_old_model(ckpt)
    task.load_state_dict(ckpt['state_dict'])

    trainer = pl.Trainer(
        default_root_dir=cfg.save_dir,
        gpus=cfg.device.gpu_ids,
        accelerator='ddp',
        log_every_n_steps=cfg.log.interval,
        num_sanity_val_steps=0,
    )
    logger.log('Starting testing...')
    trainer.test(task, val_dataloader)
Пример #15
0
def main():
    args = parse_args()
    if args.device != 'cpu':
        torch.backends.cudnn.enabled = True
        torch.backends.cudnn.benchmark = True

    load_config(cfg, args.config)
    logger = Logger(-1, use_tensorboard=False)
    predictor = Predictor(cfg, args.model, logger, device=args.device)
    logger.log('Press "Esc", "q" or "Q" to exit.')
    if args.demo == 'image':
        if os.path.isdir(args.path):
            files = get_image_list(args.path)
        else:
            files = [args.path]
        files.sort()
        for image_name in files:
            meta, res = predictor.inference(image_name)
            predictor.visualize(res, meta, cfg.class_names, 0.35)
            ch = cv2.waitKey(0)
            if ch == 27 or ch == ord('q') or ch == ord('Q'):
                break
    elif args.demo == 'video' or args.demo == 'webcam':
        cap = cv2.VideoCapture(args.path if args.demo ==
                               'video' else args.camid)
        result_video_path = args.path.replace('.avi', '_result.avi')
        fps = cap.get(cv2.CAP_PROP_FPS)
        w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        size = (w, h)
        result_cap = cv2.VideoWriter(result_video_path,
                                     cv2.VideoWriter_fourcc(*'mp4v'), fps,
                                     size)
        while True:
            ret_val, frame = cap.read()
            if not ret_val:
                break
            meta, res = predictor.inference(frame)
            # predictor.visualize(res, meta, cfg.class_names, 0.35)
            result_frame = predictor.draw_bbox(res, meta, cfg.class_names,
                                               0.36)
            write_frame = cv2.resize(result_frame, (w, h),
                                     interpolation=cv2.INTER_NEAREST)
            result_cap.write(write_frame)
Пример #16
0
def test_config_files():
    root_path = join(dirname(__file__), "../..")
    cfg_folder = join(root_path, "config")
    if not exists(cfg_folder):
        raise FileNotFoundError("Cannot find config folder.")

    cfg_paths = collect_files(cfg_folder, [".yml", ".yaml"])
    for cfg_path in cfg_paths:
        print(f"Start testing {cfg_path}")
        config = copy.deepcopy(cfg)

        # test load cfg
        load_config(config, cfg_path)
        assert "save_dir" in config
        assert "model" in config
        assert "data" in config
        assert "device" in config
        assert "schedule" in config
        assert "log" in config

        # test build model
        model = build_model(config.model)
        assert config.model.arch.name == model.__class__.__name__
Пример #17
0
    print('finished exporting onnx ')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg_file',
                        type=str,
                        default='./config/nanodet-m.yml',
                        help='config file path')
    parser.add_argument('--weights_file',
                        type=str,
                        default='./weights/nanodet_m.pth',
                        help='weights file path')
    parser.add_argument('--output_file',
                        type=str,
                        default='./nanodet-m.onnx',
                        help='onnx file path')
    parser.add_argument('--img_size',
                        nargs='+',
                        type=int,
                        default=[320, 320],
                        help='image size')
    parser.add_argument('--batch_size', type=int, default=1, help='batch size')
    opt = parser.parse_args()
    load_config(cfg, opt.cfg_file)
    main(cfg,
         opt.weights_file,
         opt.output_file,
         input_shape=opt.img_size,
         batch_size=opt.batch_size)
Пример #18
0
def run(args):
    """
    :param args:
    :return:
    """
    load_config(cfg, args.config)

    local_rank = int(args.local_rank)  # what's this?
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    mkdir(local_rank, cfg.save_dir)
    logger = Logger(local_rank, cfg.save_dir)

    if args.seed is not None:
        logger.log('Set random seed to {}'.format(args.seed))
        init_seeds(args.seed)

    logger.log('Creating model...')
    model = build_model(cfg.model)

    logger.log('Setting up data...')
    train_dataset = build_dataset(cfg.data.train, 'train')  # build_dataset(cfg.data.train, 'train')
    val_dataset = build_dataset(cfg.data.val, 'test')

    if len(cfg.device.gpu_ids) > 1:  # More than one GPU(distributed training)
        print('rank = ', local_rank)
        num_gpus = torch.cuda.device_count()
        torch.cuda.set_device(local_rank % num_gpus)
        dist.init_process_group(backend='nccl')
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)

        if args.is_debug:
            train_data_loader = torch.utils.data.DataLoader(train_dataset,
                                                            batch_size=cfg.device.batchsize_per_gpu,
                                                            num_workers=0,
                                                            pin_memory=True,
                                                            collate_fn=collate_function,
                                                            sampler=train_sampler,
                                                            drop_last=True)
        else:
            train_data_loader = torch.utils.data.DataLoader(train_dataset,
                                                            batch_size=cfg.device.batchsize_per_gpu,
                                                            num_workers=cfg.device.workers_per_gpu,
                                                            pin_memory=True,
                                                            collate_fn=collate_function,
                                                            sampler=train_sampler,
                                                            drop_last=True)
    else:
        if args.is_debug:
            train_data_loader = torch.utils.data.DataLoader(train_dataset,
                                                            batch_size=cfg.device.batchsize_per_gpu,
                                                            shuffle=True,
                                                            num_workers=0,
                                                            pin_memory=True,
                                                            collate_fn=collate_function,
                                                            drop_last=True)
        else:
            train_data_loader = torch.utils.data.DataLoader(train_dataset,
                                                            batch_size=cfg.device.batchsize_per_gpu,
                                                            shuffle=True,
                                                            num_workers=cfg.device.workers_per_gpu,
                                                            pin_memory=True,
                                                            collate_fn=collate_function,
                                                            drop_last=True)

    if args.is_debug:
        val_data_loader = torch.utils.data.DataLoader(val_dataset,
                                                      batch_size=1,
                                                      shuffle=False,
                                                      num_workers=0,
                                                      pin_memory=True,
                                                      collate_fn=collate_function, drop_last=True)
    else:
        val_data_loader = torch.utils.data.DataLoader(val_dataset,
                                                      batch_size=1,
                                                      shuffle=False,
                                                      num_workers=1,
                                                      pin_memory=True,
                                                      collate_fn=collate_function, drop_last=True)

    # -----
    trainer = build_trainer(local_rank, cfg, model, logger)

    if 'load_model' in cfg.schedule:
        trainer.load_model(cfg)
    if 'resume' in cfg.schedule:
        trainer.resume(cfg)

    # ----- Build a evaluator
    evaluator = build_evaluator(cfg, val_dataset)
    # evaluator = None

    logger.log('Starting training...')
    trainer.run(train_data_loader, val_data_loader, evaluator)
Пример #19
0
def test_lightning_training_task():
    load_config(cfg, "./config/legacy_v0.x_configs/nanodet-m.yml")
    task = TrainingTask(cfg)
    runner = DummyRunner(task)
    runner.test()
Пример #20
0
def main():
    server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
    server.bind(('127.0.0.1', 8000))
    server.listen(5)
    print("waiting msg ...")
    conn, clint_add = server.accept()

    args = parse_args()
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    load_config(cfg, args.config)
    logger = Logger(-1, use_tensorboard=False)
    predictor = Predictor(cfg, args.model, logger, device='cuda:0')
    logger.log('Press "Esc", "q" or "Q" to exit.')
    if args.demo == 'image':
        if os.path.isdir(args.path):
            files = get_image_list(args.path)
        else:
            files = [args.path]
        files.sort()
        for image_name in files:
            meta, res = predictor.inference(image_name)
            predictor.visualize(res, meta, cfg.class_names, 0.35)
            ch = cv2.waitKey(0)
            if ch == 27 or ch == ord('q') or ch == ord('Q'):
                break
    elif args.demo == 'video' or args.demo == 'webcam':
        pipeline = rs.pipeline()
        # 创建 config 对象:
        config = rs.config()
        config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
        # Start streaming
        pipeline.start(config)
        #cap = cv2.VideoCapture(args.path if args.demo == 'video' else args.camid)
        while True:
            next_frames = pipeline.wait_for_frames()
            get_next_color_frame = next_frames.get_color_frame()
            frame = np.asanyarray(get_next_color_frame.get_data())
            meta, res = predictor.inference(frame)

            predictor.visualize(res, meta, cfg.class_names, 0.70)
            all_box = []
            for label in res:
                for bbox in res[label]:
                    score = bbox[-1]
                    if score > 0.70:
                        x0, y0, x1, y1 = [int(i) for i in bbox[:4]]
                        all_box.append([label, x0, y0, x1, y1, score])
            all_box.sort(key=lambda v: v[5])

            send_data_byte = bytes(0)
            time.sleep(0.005)
            if len(all_box) == 0:
                leftup_rightdown_corner = [-1, 0, 0, 0, 0, time.time(), 'b']
                for i in range(len(leftup_rightdown_corner)):
                    #print(pickup_leftup_rightdown_corner[i])
                    pickup_senddata = str(leftup_rightdown_corner[i]) + ','
                    # print(pickup_senddata.encode())
                    send_data_byte += pickup_senddata.encode()
                    # print(send_data_byte)
                conn.send(send_data_byte)
            else:
                zzw = all_box[-1]
                label, x0, y0, x1, y1, score = zzw
                leftup_rightdown_corner = [1, x0, y0, x1, y1, time.time(), 'a']
                for i in range(len(leftup_rightdown_corner)):
                    target_senddata = str(leftup_rightdown_corner[i]) + ','
                    send_data_byte += target_senddata.encode()
                conn.send(send_data_byte)

            ch = cv2.waitKey(1)
            if ch == 27 or ch == ord('q') or ch == ord('Q'):
                break
Пример #21
0
def main(args):
    load_config(cfg, args.config)
    if cfg.model.arch.head.num_classes != len(cfg.class_names):
        raise ValueError(
            "cfg.model.arch.head.num_classes must equal len(cfg.class_names), "
            "but got {} and {}".format(cfg.model.arch.head.num_classes,
                                       len(cfg.class_names)))
    local_rank = int(args.local_rank)
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    mkdir(local_rank, cfg.save_dir)

    logger = NanoDetLightningLogger(cfg.save_dir)
    logger.dump_cfg(cfg)

    if args.seed is not None:
        logger.info("Set random seed to {}".format(args.seed))
        pl.seed_everything(args.seed)

    logger.info("Setting up data...")
    train_dataset = build_dataset(cfg.data.train, "train")
    val_dataset = build_dataset(cfg.data.val, "test")

    evaluator = build_evaluator(cfg.evaluator, val_dataset)

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=cfg.device.batchsize_per_gpu,
        shuffle=True,
        num_workers=cfg.device.workers_per_gpu,
        pin_memory=True,
        collate_fn=naive_collate,
        drop_last=True,
    )
    val_dataloader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=cfg.device.batchsize_per_gpu,
        shuffle=False,
        num_workers=cfg.device.workers_per_gpu,
        pin_memory=True,
        collate_fn=naive_collate,
        drop_last=False,
    )

    logger.info("Creating model...")
    task = TrainingTask(cfg, evaluator)

    if "load_model" in cfg.schedule:
        ckpt = torch.load(cfg.schedule.load_model)
        if "pytorch-lightning_version" not in ckpt:
            warnings.warn(
                "Warning! Old .pth checkpoint is deprecated. "
                "Convert the checkpoint with tools/convert_old_checkpoint.py ")
            ckpt = convert_old_model(ckpt)
        load_model_weight(task.model, ckpt, logger)
        logger.info("Loaded model weight from {}".format(
            cfg.schedule.load_model))

    model_resume_path = (os.path.join(cfg.save_dir, "model_last.ckpt")
                         if "resume" in cfg.schedule else None)

    accelerator = None if len(cfg.device.gpu_ids) <= 1 else "ddp"

    trainer = pl.Trainer(
        default_root_dir=cfg.save_dir,
        max_epochs=cfg.schedule.total_epochs,
        gpus=cfg.device.gpu_ids,
        check_val_every_n_epoch=cfg.schedule.val_intervals,
        accelerator=accelerator,
        log_every_n_steps=cfg.log.interval,
        num_sanity_val_steps=0,
        resume_from_checkpoint=model_resume_path,
        callbacks=[ProgressBar(refresh_rate=0)],  # disable tqdm bar
        logger=logger,
        benchmark=True,
        gradient_clip_val=cfg.get("grad_clip", 0.0),
    )

    trainer.fit(task, train_dataloader, val_dataloader)
Пример #22
0
def test_flops():
    load_config(cfg, "./config/legacy_v0.x_configs/nanodet-m.yml")

    model = build_model(cfg.model)
    input_shape = (3, 320, 320)
    get_model_complexity_info(model, input_shape)
Пример #23
0
                        help="Path to .ckpt model.")
    parser.add_argument(
        "--out_path",
        type=str,
        default="nanodet.torchscript.pth",
        help="TorchScript model output path.",
    )
    parser.add_argument("--input_shape",
                        type=str,
                        default=None,
                        help="Model input shape.")
    return parser.parse_args()


if __name__ == "__main__":
    args = parse_args()
    cfg_path = args.cfg_path
    model_path = args.model_path
    out_path = args.out_path
    input_shape = args.input_shape
    load_config(cfg, cfg_path)
    if input_shape is None:
        input_shape = cfg.data.train.input_size
    else:
        input_shape = tuple(map(int, input_shape.split(",")))
        assert len(input_shape) == 2
    if model_path is None:
        model_path = os.path.join(cfg.save_dir, "model_best/model_best.ckpt")
    main(cfg, model_path, out_path, input_shape)
    print("Model saved to:", out_path)
Пример #24
0
    def startNanodetTrain(self):
        #加载配置文件
        load_config(cfg, self.nanoTrainConfig['cfg'])
        #判断分布式训练当中该主机的角色
        local_rank = int(self.nanoTrainConfig["local_rank"])
        # torch.backends.cudnn.enabled = True
        # torch.backends.cudnn.benchmark = True
        mkdir(local_rank, self.nanoTrainConfig["save_dir"])
        logger = Logger(local_rank, self.nanoTrainConfig["save_dir"])
        if self.nanoTrainConfig.keys().__contains__("seed"):
            logger.log('Set random seed to {}'.format(
                self.nanoTrainConfig['seed']))
            self.init_seeds(self.nanoTrainConfig['seed'])

        #1.创建模型
        model = build_model(cfg.model)
        model = model.cpu()

        #2.加载数据
        logger.log('Setting up data...')
        train_dataset = build_dataset(cfg.data.train, 'train',
                                      self.nanoTrainConfig)
        val_dataset = build_dataset(cfg.data.val, 'test', self.nanoTrainConfig)

        if len(cfg.device.gpu_ids) > 1:
            print('rank = ', local_rank)
            num_gpus = torch.cuda.device_count()
            torch.cuda.set_device(local_rank % num_gpus)
            dist.init_process_group(backend='nccl')
            train_sampler = torch.utils.data.distributed.DistributedSampler(
                train_dataset)
            train_dataloader = torch.utils.data.DataLoader(
                train_dataset,
                batch_size=cfg.device.batchsize_per_gpu,
                num_workers=cfg.device.workers_per_gpu,
                pin_memory=True,
                collate_fn=collate_function,
                sampler=train_sampler,
                drop_last=True)
        else:
            print("加载数据...")
            train_dataloader = torch.utils.data.DataLoader(
                train_dataset,
                batch_size=cfg.device.batchsize_per_gpu,
                shuffle=True,
                num_workers=cfg.device.workers_per_gpu,
                pin_memory=True,
                collate_fn=collate_function,
                drop_last=True)

        val_dataloader = torch.utils.data.DataLoader(
            val_dataset,
            batch_size=1,
            shuffle=False,
            num_workers=1,
            pin_memory=True,
            collate_fn=collate_function,
            drop_last=True)

        trainer = build_trainer(local_rank, cfg, model, logger)

        if 'load_model' in cfg.schedule:
            trainer.load_model(cfg)
        if 'resume' in cfg.schedule:
            trainer.resume(cfg)

        evaluator = build_evaluator(cfg, val_dataset)

        logger.log('Starting training...')
        trainer.run(train_dataloader, val_dataloader, evaluator,
                    self.nanoTrainConfig)