FIGDIR = os.path.join(PAPERDIR, "figures", "") DATADIR = os.path.join(HOME, "Dropbox", "nanopores", "fields") f.set_dir_mega() number = False geop = nanopores.Params(pughpore.params) hpore = geop.hpore fieldsname = 'eventsnew_both_1_' params = dict(avgbind1=23e6, avgbind2=3e4, P_bind1=0.035, P_bind2=3e-1, z0=hpore / 2. + 0.) drop, th = f.get("events_pugh_experiment", "drop", "t") th = [1e0 * time for time in th] #cmap=matplotlib.cm.get_cmap('viridis') data = f.get_fields(fieldsname, **params) figname = fieldsname + '_%.1e_%.1e_%.1e_%.1e' % ( params["avgbind1"], params["avgbind2"], params["P_bind1"], params["P_bind2"]) + str(params["z0"]) t = data["t"] a = data["a"] ood = data["ood"] lendata = len(t) fac = 1. if max(t) < 1e-2: fac = 1e3 t = [x * 1e3 for x in t]
# label="Simple Gamma fit") plt.plot(tt, gamma.pdf_direct(tt), label="Compound Gamma fit") #plt.plot(tt, gamma.pdf_bessel(tt), ".k", label="Compound Gamma fit") #plt.plot(kk*dt, poisson.pmf(kk, k0), label="Poisson fit") #plt.plot(tt) if xlog: plt.xscale("log") #plt.ylim(ymin=1e-10) #plt.yscale("log") plt.xlabel("Attempt time [ns]") plt.ylabel("Rel. frequency") plt.legend() if todo.fit_experiments: # get data drop, tsample = fields.get("events_pugh_experiment", "drop", "t") tsample = tsample.load() log = True std = False cutoff = 0.1 # [ms], detection limit cutoff # plot data with indication of two clusters sep = 2. large = tsample >= sep toosmall = tsample < cutoff plt.figure("data_scatter", figsize=(4, 3)) plt.scatter(tsample[toosmall], drop[toosmall], color="r") plt.scatter(tsample[~toosmall], drop[~toosmall]) #plt.scatter(tsample[~large & ~toosmall], drop[~large & ~toosmall]) #plt.scatter(tsample[large], drop[large], color="g") plt.axvline(x=cutoff, color="r")
l2 = up.l2 l3 = up.l3 l4 = up.l4 hpore = up.hpore hmem = up.hmem h2 = up.h2 h1 = up.h1 h4 = up.h4 figsize1 = (2.2, 1.7) figsize2 = (10, 2.21) lw = .5 # eventspara_nobind_traj_0.00109600_0424_1.7e+07_3.0e+04_1.9e-01_3.0e-0123.0 # eventspara_nobind_traj_0.00236500_0316_1.7e+07_3.0e+04_1.9e-01_3.0e-0123.0 x, y, z, j, t, b1, b2 = fields.get("eventspara_nobind", "X", "Y", "Z", "J", "T", "b1", "b2") ind = [424, 316] # indices loc = [8, 9] colors = ["red", "green"] for m in 0, 1: i = ind[m] X = x[i].load() Y = y[i].load() Z = z[i].load() T = t[i].load() J = j[i].load() I0 = 7.523849e-10 bind1 = np.where(T > 1e6)[0]
# (c) 2017 Gregor Mitscha-Baude import matplotlib.pyplot as plt from matplotlib import rcParams, rc rcParams.update({ "font.size" : 7, "axes.titlesize" : 7, "font.family" : "sans-serif", "font.sans-serif" : ["CMU Sans Serif"], "lines.linewidth" : 1, "lines.markersize" : 5, }) from nanopores.tools import fields, savefigs fields.set_dir_mega() t_exp, A_exp = fields.get("events_pugh_experiment", "t", "drop") t_sim, A_sim = fields.get("eventsnew_both_1_", "t", "a") plt.figure("pugh", figsize=(1.7, 1.6)) plt.scatter(t_sim, A_sim, s=3, alpha=0.5, linewidth=0, color="#00cc00", zorder=100, label="Simulation") plt.scatter(t_exp, A_exp, s=3, alpha=0.5, linewidth=0, color="r", label="Experiment") plt.xscale("log") plt.ylim(ymax=51) plt.xlim(.5e-5, 3e2) ax = plt.gca() ax.invert_yaxis() ax.set_yticklabels([]) ax.set_xticklabels([]) ax.set_yticks([]) ax.set_xticks([])