Пример #1
0
import nanopores.models.pughpore as pughm
from nanopores.tools import fields
import nanopores
import folders

nanopores.add_params(h=1.)
functions, mesh = fields.get_functions("pugh_distance", h=h)
y = functions["y"]
pughm.Plotter().plot(y, title="distance", interactive=True)
Пример #2
0
# iv curve or other stuff for Howorka where geometry can be reused
import numpy
import nanopores
import matplotlib.pyplot as plt
from nanopores.models import Howorka
from matplotlib2tikz import save as tikz_save

nanopores.add_params(**Howorka.PARAMS)
nanopores.add_params(
    bV=numpy.linspace(-0.1, 0.1, 11),
    dnaqsdamp=[0.2, 0.35, 0.5],
    bulkcon=300,
    plot="bV",
    nproc=4,
)
print PARAMS

geo_params = dict(z0=None, rMolecule=rMolecule, Rx=Rx, Ry=Ry)
geo, phys = Howorka.setup2D(**geo_params)
mesh = geo.mesh


def run(**phys_params):
    params = geo_params.copy()
    params.update(phys_params)
    geo, phys = Howorka.setup2D(mesh=mesh, **params)
    pb, pnps = Howorka.solve2D(geo, phys, **params)
    return dict(J=pnps.get_functional("Javgctr"))


#result, stamp = nanopores.iterate_in_parallel(run, iterkeys=[plot], **PARAMS)
Пример #3
0
import nanopores, dolfin, numpy, os
from nanopores.tools.functions1D import Geometry1D
from nanopores.physics.convdiff import ConvectionDiffusion, ConvectionDiffusionSteady
from nanopores.models import Howorka
from nanopores import Interval
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import force_profiles
from collections import defaultdict
from functools import partial

nanopores.add_params(
    savefig=False,
    steady=False,
    log=True,
    levels=1,
    t=1e-8,
    steps=100,  # timesteps per level for logarithmic time plot
)

# create 1D version of pore geometry
a, b = -1000., 1000.
N = 10000
domain = Interval(a, b)
h = 0.5 * Howorka.params_geo.l0  # half pore length
pore = Interval(-h, h)
bulkfluidtop = Interval(h, b)

domain.addsubdomains(
    #fluid = domain,
    pore=pore,
Пример #4
0
"""do stuff on top of PNPS solve,
like convecting analyte concentration with force field.
TODO: also plot duplicate left half"""

import numpy, dolfin, os
from matplotlib import pyplot
import matplotlib.tri as mtri
import matplotlib
import nanopores
from nanopores.models import Howorka
from nanopores.physics.convdiff import ConvectionDiffusion

nanopores.add_params(
    log = True,
    save = False,
    video = False,
    levels = 7,
    steps = 100, # timesteps per level for logarithmic time plot
    **Howorka.PARAMS)
PARAMS.pop("z0")

# video directories
TMPDIR = "/tmp/video/"
VIDDIR = os.path.expanduser("~") + "/presentations/nanopores/"
if video:
    if not os.path.exists(TMPDIR):
        os.makedirs(TMPDIR)
    else:
        for f in os.listdir(TMPDIR):
            os.remove(TMPDIR + f)
Пример #5
0
import os
import nanopores
import matplotlib.pyplot as plt
from mysolve import load_estimators as load

nanopores.add_params(est="F")
F = "err ref" if est == "ref" else est
DIR = os.path.expanduser("~") + "/papers/pnps-numerics/figures/"

for dim in "3D", "2D":
    estimators = load("adap%s" % dim)
    estimators_cheap = load("adap%scheap" % dim)
    estimators_unif = load("adap%suniform" % dim)

    for est in estimators, estimators_cheap, estimators_unif:
        est["Fabs"] = nanopores.Estimator("Fabs")
        est["Fabs"].pairs = [
            (N, abs(drag) + abs(el))
            for (N, drag), (N1,
                            el) in zip(est["Fdrag"].pairs, est["Fel"].pairs)
        ]

    estimators[F].name = "adaptive"
    estimators_cheap[F].name = "adaptive (cheap)"
    estimators_unif[F].name = "uniform"

    rate = -2. / float(dim[0])
    estimators[F].plot()
    estimators_cheap[F].plot(fig=False)
    estimators_unif[F].plot(fig=False, rate=rate)
Пример #6
0
"""
TODO:
    -) understand no boundary condition
    -) validate understanding with analytical solution
"""
import nanopores, dolfin, os
from nanopores.physics.simplepnps import SimpleNernstPlanckProblem
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import force_profiles
from collections import defaultdict

nanopores.add_params(savefig=False)


class DiffusionProblem1D(SimpleNernstPlanckProblem):
    method = SimpleNernstPlanckProblem.method
    method["iterative"] = False

    @staticmethod
    def initial_u(V, c0):
        u = dolfin.Function(V)
        u.interpolate(dolfin.Constant(c0))
        return u

    @staticmethod
    def forms(V, geo, phys, F):
        dx = geo.dx()
        grad = phys.grad
        kT = dolfin.Constant(phys.kT)
        D = dolfin.Constant(Dtarget(phys.rTarget))
Пример #7
0
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 24 11:42:54 2016

@author: gregor
"""
import os
import dolfin
import nanopores.geometries.pughpore as pugh
import nanopores

nanopores.add_params(
    z=0.,
    r=1.,
)
print os.getpid()
geo = pugh.get_geo_cyl(x0=[1., 1., z], rMolecule=r)  #rMolecule=0.15)
dolfin.plot(geo.subdomains)
dolfin.plot(geo.boundaries)
dolfin.interactive()
Пример #8
0
"""save/load/modify PNPS force field."""

import numpy, dolfin
import nanopores
from nanopores.models import Howorka

nanopores.add_params(Howorka,
    z0 = None,
    bV = 0.,
    dnaqsdamp = 0.5,
    save = False,
)
# save and load implicit force field
FNAME = "howorka2D_implicit"

def save_force_field(**params):
    F, Fel, Fdrag = Howorka.F_field_implicit(**params)
    mesh = Howorka.geo.mesh
    nanopores.save_functions(FNAME, mesh, meta=params, F=F, Fel=Fel, Fdrag=Fdrag)
    
if save:
    save_force_field(**PARAMS)
    exit()
    
def load_force_field():
    forces, mesh, params = nanopores.load_vector_functions(FNAME)
    #mesh = forces["F"].function_space().mesh()
    return forces["F"], forces["Fel"], forces["Fdrag"], mesh, params

# get forces and accompanying function spaces
F, Fel, Fdrag, mesh, params = load_force_field()
Пример #9
0
import itertools, numpy
import nanopores
import HoworkaSimple as H

nanopores.add_params(
    bVstep=0.025,
    tol=1e-2,
    h=.5,
)

bVs = [-.01, -.02, -.05, -.1, -.2, -.5, -1., -2.]
qs = [0.1, 0.25, 0.5, 1., 2.]
params = itertools.product(bVs, qs)
M, N = len(bVs), len(qs)

geo, _ = H.setup2D(z0=None, h=h)
solve = (lambda phys: H.solve2D_fixedpoint(geo, phys, imax=20, tol=tol),
         lambda phys: H.solve2D_fixedpoint_bVscheme(
             geo, phys, imax=20, bVstep=bVstep, tol=tol),
         lambda phys: H.solve2D_fixedpoint_bVscheme(
             geo, phys, imax=100, bVstep=bVstep, tol=tol),
         lambda phys: H.solve2D_hybrid(geo, phys, imax=10, tol=tol),
         lambda phys: H.solve2D_hybrid_PB(geo, phys, imax=10, tol=tol))
data = tuple(numpy.zeros([M, N], dtype=bool) for k in range(5))

#for bV, dnaqs in params:
for i in range(M):
    for j in range(N):
        phys = H.phys2D(geo, bV=bVs[i], dnaqsdamp=qs[j])
        for k in range(5):
            data[k][i, j] = solve[k](phys)
Пример #10
0
"create 2D point set for Howorka model where force shall be evaluated."
import numpy as np
from itertools import product
import math
import matplotlib.pyplot as plt
import nanopores
gauss = np.polynomial.legendre.leggauss

nanopores.add_params(
    h = 0.5,
    hout = 1.,    
    Ry = 10.,
    Rx = 3.,
)

def points(h, hout, r0, r, l0, Rx, Ry):
    # effective pore radius for molecule
    R = r0 - r
    
    # get scaled 1D gauss quadrature nodes
    # for x grid inside pore
    # this has h = h/2 to resolve the thin region
    k = int(math.ceil(R/h*2.))
    x, w = gauss(2*k + 1)
    x = R*x[k:]
    
    # get uniform y grid inside pore
    m = int(math.ceil(2.*l0/h))
    y = np.linspace(-l0-r+h/2, l0+r-h/2, m)
    
    # list of (x,y) values in pore
Пример #11
0
"plot 1D force/PMF profiles for 2D Howorka pore and save"

import os, numpy, dolfin, Howorka
from nanopores import kB, T, add_params, save_dict, saveplots, showplots
from matplotlib.pyplot import figure, plot, legend, show, title, xlabel, ylabel, savefig

add_params(
    himp=.2,
    hexp=.5,
    Nimp=1e5,
    Nexp=2e4,
    Qmol=-1.,
    Nz=2,
)


# get force from explicit molecule
def F_explicit(*lspace):
    for z0 in numpy.linspace(*lspace):
        geo, phys = Howorka.setup2D(z0=z0, h=hexp, Qmol=Qmol)
        dolfin.plot(geo.boundaries, key="b", title="boundaries")
        pb, pnps = Howorka.solve2D(geo, phys, Nmax=Nexp, cheapest=True)
        yield pnps.zforces()


# get force from implicit molecule
def F_implicit(*lspace):
    geo, phys = Howorka.setup2D(z0=None, h=himp, Qmol=Qmol)
    pb, pnps = Howorka.solve2D(geo, phys, Nmax=Nimp, cheapest=True)
    (v, cp, cm, u, p) = pnps.solutions()
    F, Fel, Fdrag = phys.Forces(v, u)
Пример #12
0
"""run diffusion equation to determine selectivity"""

import numpy, dolfin
from matplotlib import pyplot
import nanopores
from nanopores.physics.convdiff import ConvectionDiffusion

nanopores.add_params(
    log = True,
    levels = 1,
    t = 1e-0,
    steps = 100, # timesteps per level for logarithmic time plot
)

# import force field, mesh etc.
from forcefield import geo, phys, Fel, Fdrag, params

# initial condition

#N = 10. # number of molecules to diffuse
#r = 50. # radius of spherical region where molecules start [nm]
#Vol = dolfin.pi*4./3.*r**3 # volume of region [nm**3]
#c0 = N/Vol # concentration [1/nm**3]
#x0 = numpy.array([0., z0]) # position of region 
#u0f = lambda x: (c0 if sum((x-x0)**2) < r**2 else 0.) # function

# concentration in 1/nm**3 (Burns et al.)
c0 = 2*50.*(phys.mol*phys.nm**3) # 50 mM = 50*mol/m**3 (50*6e23*1e-27 = 3e-2)
u0 = geo.pwconst("c0", dict(bulkfluidtop = c0, default=0.))

# total concentration
Пример #13
0
"calculate 2D implicit forcefield; clever save/continue depending on params."
from nanopores.models import Howorka
from nanopores.tools import fields
import nanopores

nanopores.add_params(
    rMolecule=0.5,
    Qmol=-1.,
    h=1.,
    Nmax=2e4,
)

params = dict(
    bV=0.,
    dnaqsdamp=0.5,
    rMolecule=rMolecule,
    Qmol=Qmol,
    bulkcon=3e2,
    Nmax=Nmax,
    h=h,
    Rx=12.,
    Ry=12.,
)

# save and load implicit force field
NAME = "force2Dimp"


def save_forcefield_implicit(**params):
    F, Fel, Fdrag = Howorka.F_field_implicit(**params)
    mesh = Howorka.geo.mesh
Пример #14
0
import dolfin
from itertools import product
import nanopores
from nanopores.tools import fields
from nanopores.models import Howorka
import forcefield2D
#from plot_forcefield import porestreamlines

import matplotlib.pyplot as plt
import matplotlib.tri as mtri
import matplotlib.delaunay as dln
import matplotlib.ticker
import matplotlib.patches as patches
import colormaps as cm

nanopores.add_params(eps=0.1, )


def porestreamlines(polygon=None,
                    rx=10.,
                    ry=10.,
                    Nx=100,
                    Ny=100,
                    maxvalue=None,
                    **fields):
    "streamlines plot of vector field around nanopore"

    # interpolate on regular mesh symmetric w.r.t. center axis
    #mesh2D = nanopores.RectangleMesh([-rx-0.1,-ry-0.1], [rx+0.1,ry+0.1], Nx, Ny)
    #fields2 = nanopores.convert2D(mesh2D, *(fields.values()))
Пример #15
0
"calculate force on given points; clever save/continue depending on params."
from nanopores.models import Howorka
from nanopores.tools import fields
from nanopores import add_params

add_params(
    rMolecule=0.5,
    Qmol=-1.,
    dnaqsdamp=0.5,
)

params = dict(
    bV=0.,
    dnaqsdamp=dnaqsdamp,
    rMolecule=rMolecule,
    Qmol=Qmol,
    bulkcon=3e2,
)

solver_params = dict(
    params,
    Rx=8.,
    h3D=8.,
    h=1.,
    lcpore=0.1,
    Nmax3D=2.5e4,  # UMFPACK: max. ca. 3e4
    Nmax=1e4,
    stokesLU=True,
)
fields.update()
Пример #16
0
import numpy, dolfin, nanopores
from dolfin import *
from nanopores.geometries.finfet import finfet
from nanopores import showplots, saveplots, add_params
from collocation import dopants

add_params(
Ndop = 4,
h = 1.,
maxorder = 2,
)

def solve(geo, dops):
    tic()
    t = dolfin.Timer("phys")
    phys = nanopores.Physics("finfet", geo,
        dopants=dops,
        vD=None, vG=None, vS=None)
    phys.add_dopants
    t.stop()
    dolfin.plot(geo.submesh("source"), key="dop", title="dopants in source")
    
    t = dolfin.Timer("init")
    pde = nanopores.NonstandardPB(geo, phys)
    pde.tolnewton = 1e-8
    pde.newtondamp = 1.
    t.stop()
    t = dolfin.Timer("solve")
    pde.solve()
    t.stop()
    u = pde.solution
Пример #17
0
    Ncol = A.shape[1]
    Ndop = A.shape[0] / 3
    dops = []

    for i, a in enumerate(A.T):
        dops.append([None] * Ndop)
        for j in range(Ndop):
            dops[i][j] = list(a[3 * j:3 * j + 3])

    if isinstance(weights, float):
        weights = [[weights]]
    return dops, list(weights[0])


# test
if __name__ == "__main__":
    from nanopores import add_params
    add_params(
        N=4,
        order=2,
    )
    dops, weights = dopants(N, order)

    for i, sample in enumerate(dops):
        print "Sample # %d:" % i
        for j, dop in enumerate(sample):
            print "  dopant #%d: %s" % (j, dop)

    print "Weights:"
    print weights