Пример #1
0
def test_range_one_image(qtbot):
    """Test adding an image with a range one dimensions.

    There should be no slider shown for the axis corresponding to the range
    one dimension.
    """
    np.random.seed(0)
    viewer = Viewer()
    view = viewer.window.qt_viewer
    qtbot.addWidget(view)

    # add 5D image data with range one dimensions
    data = np.random.random((1, 1, 1, 100, 200))
    viewer.add_image(data)
    assert np.all(viewer.layers[0].data == data)
    assert len(viewer.layers) == 1
    assert viewer.dims.ndim == 5
    assert view.dims.nsliders == 3
    assert np.sum(view.dims._displayed) == 0

    # now add 5D points data - check extra sliders have been created
    points = np.floor(5 * np.random.random((1000, 5))).astype(int)
    points[:, -2:] = 20 * points[:, -2:]
    viewer.add_points(points)
    assert np.all(viewer.layers[1].data == points)
    assert len(viewer.layers) == 2
    assert viewer.dims.ndim == 5
    assert view.dims.nsliders == 3
    assert np.sum(view.dims._displayed) == 3

    # Close the viewer
    viewer.window.close()
Пример #2
0
def test_nD_points(qtbot):
    """Test adding nD points."""
    viewer = Viewer()
    view = viewer.window.qt_viewer
    qtbot.addWidget(view)

    np.random.seed(0)
    data = 20 * np.random.random((10, 3))
    viewer.add_points(data)
    assert np.all(viewer.layers[0].data == data)

    assert len(viewer.layers) == 1
    assert view.layers.vbox_layout.count() == 2 * len(viewer.layers) + 2

    assert viewer.dims.ndim == 3
    assert view.dims.nsliders == viewer.dims.ndim
    assert np.sum(view.dims._displayed_sliders) == 1

    # Flip dims order displayed
    viewer.dims.order = [0, 2, 1]
    assert viewer.dims.order == [0, 2, 1]

    # Flip dims order including non-displayed
    viewer.dims.order = [1, 0, 2]
    assert viewer.dims.order == [1, 0, 2]

    # Switch to 3D rendering
    viewer.dims.ndisplay = 3
    assert np.sum(view.dims._displayed_sliders) == 0
    assert viewer.dims.ndisplay == 3
    viewer.dims.ndisplay = 2
    assert viewer.dims.ndisplay == 2

    # Close the viewer
    viewer.window.close()
Пример #3
0
def test_screenshot(qtbot):
    "Test taking a screenshot"
    viewer = Viewer()
    view = viewer.window.qt_viewer
    qtbot.addWidget(view)

    np.random.seed(0)
    # Add image
    data = np.random.random((10, 15))
    viewer.add_image(data)

    # Add labels
    data = np.random.randint(20, size=(10, 15))
    viewer.add_labels(data)

    # Add points
    data = 20 * np.random.random((10, 2))
    viewer.add_points(data)

    # Add vectors
    data = 20 * np.random.random((10, 2, 2))
    viewer.add_vectors(data)

    # Add shapes
    data = 20 * np.random.random((10, 4, 2))
    viewer.add_shapes(data)

    # Take screenshot
    screenshot = viewer.screenshot()
    assert screenshot.ndim == 3

    # Close the viewer
    viewer.window.close()
Пример #4
0
def test_range_one_images_and_points(qtbot):
    """Test adding images with range one dimensions and points.

    Intially no sliders should be present as the images have range one
    dimensions. On adding the points the sliders should be displayed.
    """
    np.random.seed(0)
    viewer = Viewer()
    view = viewer.window.qt_viewer
    qtbot.addWidget(view)

    # add 5D image data with range one dimensions
    data = np.random.random((1, 1, 1, 100, 200))
    viewer.add_image(data)
    assert np.all(viewer.layers[0].data == data)
    assert len(viewer.layers) == 1
    assert viewer.dims.ndim == 5
    assert view.dims.nsliders == viewer.dims.ndim
    assert np.sum(view.dims._displayed_sliders) == 0

    # now add 5D points data - check extra sliders have been created
    points = np.floor(5 * np.random.random((1000, 5))).astype(int)
    points[:, -2:] = 20 * points[:, -2:]
    viewer.add_points(points)
    assert np.all(viewer.layers[1].data == points)
    assert len(viewer.layers) == 2
    assert viewer.dims.ndim == 5
    assert view.dims.nsliders == viewer.dims.ndim
    assert np.sum(view.dims._displayed_sliders) == 3

    # Close the viewer
    viewer.window.close()
Пример #5
0
def test_add_points(qtbot):
    """Test adding points."""
    viewer = Viewer()
    view = viewer.window.qt_viewer
    qtbot.addWidget(view)

    np.random.seed(0)
    data = 20 * np.random.random((10, 2))
    viewer.add_points(data)
    assert np.all(viewer.layers[0].data == data)

    assert len(viewer.layers) == 1
    assert view.layers.vbox_layout.count() == 2 * len(viewer.layers) + 2

    assert viewer.dims.ndim == 2
    assert view.dims.nsliders == viewer.dims.ndim
    assert np.sum(view.dims._displayed_sliders) == 0

    # Switch to 3D rendering mode and back to 2D rendering mode
    viewer.dims.ndisplay = 3
    assert viewer.dims.ndisplay == 3
    viewer.dims.ndisplay = 2
    assert viewer.dims.ndisplay == 2

    # Close the viewer
    viewer.window.close()
Пример #6
0
def show_ax_dend(v: napari.Viewer, ax: pd.DataFrame, dend: pd.DataFrame,
                 name: str):
    for (data, meta) in zip([ax, dend], metadata):
        v.add_points(
            data.loc[::10, "x":"z"],
            edge_width=0,
            name=f"{name}_{meta[1]}",
            face_color=f"{meta[0]}",
            size=data.loc[::10, 'alpha'],
            opacity=0.2,
        )
Пример #7
0
def show_pairs(viewer: napari.Viewer, data: pd.DataFrame):
    """Highlights interesting pairs from the axonal and dendritic trees."""
    viewer.add_points(
        data.loc[:, 'ax_x':'ax_z'],
        edge_width=0,
        name='ax',
        face_color='green',
        size=data.loc[:, 'ax_alpha'],
    )
    viewer.add_points(
        data.loc[:, 'dend_x':'dend_z'],
        edge_width=0,
        name='dend',
        face_color='orange',
        size=data.loc[:, 'dend_alpha'],
    )
Пример #8
0
def show_all_equal_size(v: napari.Viewer, data: pd.DataFrame, name: str):
    """Shows all points of a neuron in napari.

    Parameters
    ----------
    v : napari.Viewer
    data : pd.DataFrame
        data
    name : str
        Neuron's name
    """
    v.add_points(
        data.loc[:, "x":"z"],
        edge_width=0,
        name=f"{name}_all",
        face_color="magenta",
    )
Пример #9
0
def test_nD_points(qtbot):
    """Test adding nD points."""
    viewer = Viewer()
    view = viewer.window.qt_viewer
    qtbot.addWidget(view)

    np.random.seed(0)
    data = 20 * np.random.random((10, 3))
    viewer.add_points(data)
    assert np.all(viewer.layers[0].data == data)

    assert len(viewer.layers) == 1
    assert view.layers.vbox_layout.count() == 2 * len(viewer.layers) + 2

    assert viewer.dims.ndim == 3
    assert view.dims.nsliders == 1
    assert np.sum(view.dims._displayed) == 1

    # Close the viewer
    viewer.window.close()
def show_collisions_with_napari(points: pd.DataFrame,
                                viewer: napari.Viewer,
                                neuron_name: str,
                                size=None):
    """Plot the collisions of the neuron with the given napari viewer.

    This function receives the points to be plotted, the viewer instance to be used
    and the name of the current neuron (to be used as the layer's label) and shows
    them all together. The given dataframe is assumed to have a 'type' categorical
    index which contains information on the type of neurite this collision is located
    on top of.

    Parameters
    ----------
    size : str, int, array (optional)
        Size of each point. If int - size in pixels. If None - defaults to 2.
        If str - should be a column name in `points`. If array - size of each
        point.
    """
    if size is None or isinstance(size, (int, np.ndarray)):
        points["size"] = size
    elif isinstance(size, str):
        points = points.rename({size: "size"}, axis=1)

    colors = ["green", "orange", "red", "yellow", "purple"]
    points["color"] = ""
    for color, type_ in zip(colors, points.index.categories):
        points.loc[type_, "color"] = color
        viewer.add_points(
            points.loc[type_, "x":"z"],
            size=points.loc[type_, "size"],
            edge_width=0.5,
            edge_color='black',
            face_color=color,
            name=f"{neuron_name}_{type_}",
        )
Пример #11
0
def test_data_change_ndisplay_points(qtbot):
    """Test change data calls for points layer with ndisplay change."""
    viewer = Viewer()
    view = viewer.window.qt_viewer
    qtbot.addWidget(view)

    np.random.seed(0)
    data = 20 * np.random.random((10, 3))
    layer = viewer.add_points(data)
    visual = view.layer_to_visual[layer]

    @patch.object(visual, '_on_data_change', wraps=visual._on_data_change)
    def test_ndisplay_change(mocked_method, ndisplay=3):
        viewer.dims.ndisplay = ndisplay
        mocked_method.assert_called_once()

    # Switch to 3D rendering mode and back to 2D rendering mode
    test_ndisplay_change(ndisplay=3)
    test_ndisplay_change(ndisplay=2)

    # Close the viewer
    viewer.window.close()
Пример #12
0
"""
Displays FISH data, raw and deconvolved, with spots detected using starFISH
"""

from skimage.io import imread
import numpy as np
import pandas as pd
from napari import Viewer, gui_qt

raw_spots = pd.read_csv('data-njs/smFISH/allen_smfish_spots.csv')
spots = raw_spots.loc[:, [['x', 'y']]].values
spots[:, 1] = -spots[:, 1]

print(len(spots))

with gui_qt():
    # create an empty viewer
    viewer = Viewer()

    # add the spots
    layer = viewer.add_points(spots)
Пример #13
0
    # create properties for each point
    properties = {
        'class': np.array([1, 2, 3]),
    }

    # define the color cycle for the face_color annotation
    face_color_cycle = ['red', 'blue', 'green', 'cyan', 'magenta', 'yellow']

    # create a points layer where the face_color is set by the good_point property
    # and the edge_color is set via a color map (grayscale) on the confidence property.
    points_layer = viewer.add_points(
        points,
        properties=properties,
        size=10,
        edge_width=1,
        edge_color='white',
        face_color='class',
        face_color_cycle=face_color_cycle,
        name='points'
    )

    # bind a function to toggle the good_point annotation of the selected points
    current_class = 1
    points_layer.help = str(current_class)

    @viewer.bind_key('1')
    def toggle_1(viewer):
        current_class = 1
        points_layer.help = str(current_class)

    @viewer.bind_key('2')
Пример #14
0
with gui_qt():
    # create an empty viewer
    viewer = Viewer()

    # add the raw images
    raw_layer = viewer.add_image(raw,
                                 name='images',
                                 colormap='gray',
                                 contrast_limits=(140.0, 1300.0))

    decon_layer = viewer.add_image(deconvolved,
                                   name='deconvolved',
                                   colormap='gray',
                                   contrast_limits=(0.0, 0.2))
    decon_layer.visible = False

    spots_layer = viewer.add_points(spots,
                                    face_color='red',
                                    edge_color='red',
                                    symbol='ring',
                                    size=8,
                                    n_dimensional=True,
                                    name='spots')
    spots_layer.opacity = 0.5

    @viewer.bind_key('s')
    def swap(viewer):
        """Swaps dims
        """
        viewer.dims.order = np.roll(viewer.dims.order, 1)
Пример #15
0
    @viewer.bind_key('r')
    def rerun(viewer):
        blobs = viewer.layers['input'].data
        distance = viewer.layers['distance'].data
        local_maxi = viewer.layers['markers'].data
        print('Number of markers: ', len(local_maxi))
        local_maxi_image = np.zeros(blobs.shape, dtype='bool')
        for cord in local_maxi:
            local_maxi_image[tuple(np.round(cord).astype(int))] = True
        markers = ndi.label(local_maxi_image)[0]
        labels = watershed(-distance, markers, mask=blobs)
        viewer.layers['output'].data = labels

    # add the raw image
    viewer.add_image(image, name='raw', colormap='gray')

    # add the input image
    viewer.add_image(blobs.astype('float'), name='input', colormap='gray')

    # add the distance image
    viewer.add_image(distance, name='distance', colormap='gray')

    # add the resulting labels image
    viewer.add_labels(labels, name='output')

    # add the ground truth as a labels image
    viewer.add_labels(gt, name='gt')

    # add the markers
    viewer.add_points(local_maxi, face_color='blue', size=3, name='markers')