Пример #1
0
def narps():
    basedir = '/tmp/data'
    assert os.path.exists(basedir)
    narps = Narps(basedir)
    narps.load_data()
    narps.metadata = pandas.read_csv(
        os.path.join(narps.dirs.dirs['metadata'], 'all_metadata.csv'))
    return (narps)
Пример #2
0
def narps():
    dataurl = os.environ['DATA_URL']
    basedir = '/tmp/data'
    if not os.path.exists(basedir):
        os.mkdir(basedir)
    narps = Narps(basedir, dataurl=dataurl)
    narps.write_data()
    return (narps)
Пример #3
0
    if args.dataurl is not None:
        dataurl = args.dataurl
    elif 'DATA_URL' in os.environ:
        dataurl = os.environ['DATA_URL']
        print('reading data URL from environment')
    else:
        dataurl = None
        print('info.json no present - data downloading will be disabled')

    # set up simulation if specified
    if args.simulate:
        print('using simulated data')

        # load main class from real analysis
        narps_orig = Narps(basedir, overwrite=False)

        # create simulated data
        # setup main class from original data
        narps = Narps(basedir)
        narps.load_data()

        # Load full metadata and put into narps structure
        narps.metadata = pandas.read_csv(
            os.path.join(narps.dirs.dirs['metadata'], 'all_metadata.csv'))

        basedir = setup_simulated_data(narps, verbose=False)

        make_orig_image_sets(narps,
                             basedir,
                             verbose=True,
Пример #4
0
                        action='store_true',
                        help='skip creation of overlap/range/std maps')
    args = parser.parse_args()

    # set up base directory
    if args.basedir is not None:
        basedir = args.basedir
    elif 'NARPS_BASEDIR' in os.environ:
        basedir = os.environ['NARPS_BASEDIR']
        print("using basedir specified in NARPS_BASEDIR")
    else:
        basedir = '/data'
        print("using default basedir:", basedir)

    # setup main class
    narps = Narps(basedir)
    narps.load_data()

    # Load full metadata and put into narps structure
    narps.metadata = pandas.read_csv(
        os.path.join(narps.dirs.dirs['metadata'], 'all_metadata.csv'))
    if not args.test:
        if not args.skip_maps:
            # create maps showing overlap of thresholded images
            mk_overlap_maps(narps)

            mk_range_maps(narps)

            mk_std_maps(narps)

        if args.detailed:
Пример #5
0
        'mean_unthresh_correlation_by_cluster.csv'),
                           index=False)
    return (results_df_wide)


if __name__ == "__main__":

    # parse arguments
    parser = argparse.ArgumentParser(description='Get similarity summary')
    parser.add_argument('-b', '--basedir', help='base directory')
    parser.add_argument('-t',
                        '--test',
                        action='store_true',
                        help='use testing mode (no processing)')
    args = parser.parse_args()

    # set up base directory
    if args.basedir is not None:
        basedir = args.basedir
    elif 'NARPS_BASEDIR' in os.environ:
        basedir = os.environ['NARPS_BASEDIR']
        print("using basedir specified in NARPS_BASEDIR")
    else:
        basedir = '/data'
        print("using default basedir:", basedir)

    narps = Narps(basedir)

    if not args.test:
        corr_summary = get_similarity_summary(narps)
Пример #6
0
            alldata_df.loc[i, 'package'] = 'Other'

    # save data for loading into R
    alldata_df.to_csv(
        os.path.join(narps.dirs.dirs['metadata'], 'all_metadata.csv'))


if __name__ == "__main__":

    # parse arguments
    parser = argparse.ArgumentParser(description='Generate NARPS metadata')
    parser.add_argument('-b', '--basedir', help='base directory')
    args = parser.parse_args()

    # set up base directory
    if args.basedir is not None:
        basedir = args.basedir
    elif 'NARPS_BASEDIR' in os.environ:
        basedir = os.environ['NARPS_BASEDIR']
        print("using basedir specified in NARPS_BASEDIR")
    else:
        basedir = '/data'
        print("using default basedir:", basedir)

    overwrite = False

    # setup main class
    narps = Narps(basedir, overwrite=overwrite)

    prepare_metadata(narps)
Пример #7
0
                                       cut_coords=cut_coords,
                                       axes=ax[i])

    plt.savefig(os.path.join(narps.dirs.dirs['figures'], 'consensus_map.pdf'))
    plt.close(fig)


if __name__ == "__main__":
    # set an environment variable called NARPS_BASEDIR
    # with location of base directory
    if 'NARPS_BASEDIR' in os.environ:
        basedir = os.environ['NARPS_BASEDIR']
    else:
        basedir = '/data'

    # setup main class
    narps = Narps(basedir)
    narps.load_data()
    narps.dirs.dirs['consensus'] = os.path.join(narps.dirs.dirs['output'],
                                                'consensus_analysis')

    logfile = os.path.join(narps.dirs.dirs['logs'],
                           '%s.txt' % sys.argv[0].split('.')[0])
    log_to_file(logfile, 'running %s' % sys.argv[0].split('.')[0], flush=True)

    if not os.path.exists(narps.dirs.dirs['consensus']):
        os.mkdir(narps.dirs.dirs['consensus'])

    run_ttests(narps, logfile)
    mk_figures(narps, logfile)
Пример #8
0
    # save data to file
    metadata_merged.to_csv(
        os.path.join(narps.dirs.dirs['figures'],
                     'MethodsTableMetadataMerged.csv'))
    decision_wide.to_csv(
        os.path.join(narps.dirs.dirs['figures'], 'DecisionDataWide.csv'))
    confidence_wide.to_csv(
        os.path.join(narps.dirs.dirs['figures'], 'ConfidenceDataWide.csv'))


if __name__ == "__main__":
    # set an environment variable called NARPS_BASEDIR
    # with location of base directory
    if 'NARPS_BASEDIR' in os.environ:
        basedir = os.environ['NARPS_BASEDIR']
    else:
        basedir = '/tmp/data'

    # setup main class
    narps = Narps(basedir, dataurl=os.environ['DATA_URL'])
    narps.load_data()

    logfile = os.path.join(narps.dirs.dirs['logs'],
                           'MakeSupplementaryFigure1.txt')

    log_to_file(logfile, 'running MakeSupplementaryFigure1.py', flush=True)

    metadata = get_all_metadata(narps)
    mk_supp_figure1(narps, metadata)
Пример #9
0
def narps(basedir):
    narps = Narps(basedir)
    narps.write_data()
    return (narps)