plot_shape = (25, 5)
    num_plots = plot_shape[0]*plot_shape[1]
    fig, axes = plt.subplots(*plot_shape, sharex=True, figsize=(9, 9) )
    plt_cts = [0 for i in range(plot_shape[1])]

    api = API(args.api_loc)

    archs = list(range(ARCH_START, ARCH_END))
    colours = ['#811F41', '#A92941', '#D15141', '#EF7941', '#F99C4B']

    strs = []
    random.shuffle(archs)
    for arch in archs:
        try:
            config = api.get_net_config(arch, 'cifar10')
            archinfo = api.query_meta_info_by_index(arch)
            acc = archinfo.get_metrics('cifar10-valid', 'x-valid')['accuracy']

            network = get_cell_based_tiny_net(config)
            network = network.to(device)
            jacobs, labels = get_batch_jacobian(network, train_loader, device)

            boundaries = [60., 70., 80., 90.]
            can_plt, row, col, accrange = decide_plot(acc, plt_cts, plot_shape[0], boundaries)
            if not can_plt:
                continue
            axes[row, col].axis('off')

            plot_hist(jacobs, axes[row, col], colours[col])
            if row == 0:
                axes[row, col].set_title(f'{accrange}')
Пример #2
0
def main(xargs):
    assert torch.cuda.is_available(), 'CUDA is not available.'
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.set_num_threads(xargs.workers)
    prepare_seed(xargs.rand_seed)
    logger = prepare_logger(args)

    train_data, valid_data, xshape, class_num = get_datasets(
        xargs.dataset, xargs.data_path, -1)
    #config_path = 'configs/nas-benchmark/algos/GDAS.config'
    config = load_config(xargs.config_path, {
        'class_num': class_num,
        'xshape': xshape
    }, logger)
    search_loader, _, valid_loader = get_nas_search_loaders(
        train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/',
        config.batch_size, xargs.workers)
    logger.log(
        '||||||| {:10s} ||||||| Search-Loader-Num={:}, batch size={:}'.format(
            xargs.dataset, len(search_loader), config.batch_size))
    logger.log('||||||| {:10s} ||||||| Config={:}'.format(
        xargs.dataset, config))

    search_space = get_search_spaces('cell', xargs.search_space_name)
    if xargs.model_config is None and not args.constrain:
        model_config = dict2config(
            {
                'name': 'ProxylessNAS',
                'C': xargs.channel,
                'N': xargs.num_cells,
                'max_nodes': xargs.max_nodes,
                'num_classes': class_num,
                'space': search_space,
                'inp_size': 0,
                'affine': False,
                'track_running_stats': bool(xargs.track_running_stats)
            }, None)
    elif xargs.model_config is None:
        model_config = dict2config(
            {
                'name': 'ProxylessNAS',
                'C': xargs.channel,
                'N': xargs.num_cells,
                'max_nodes': xargs.max_nodes,
                'num_classes': class_num,
                'space': search_space,
                'inp_size': 32,
                'affine': False,
                'track_running_stats': bool(xargs.track_running_stats)
            }, None)
    else:
        model_config = load_config(
            xargs.model_config, {
                'num_classes': class_num,
                'space': search_space,
                'affine': False,
                'track_running_stats': bool(xargs.track_running_stats)
            }, None)
    search_model = get_cell_based_tiny_net(model_config)
    #logger.log('search-model :\n{:}'.format(search_model))
    logger.log('model-config : {:}'.format(model_config))

    w_optimizer, w_scheduler, criterion = get_optim_scheduler(
        search_model.get_weights(), config)
    a_optimizer = torch.optim.Adam(search_model.get_alphas(),
                                   lr=xargs.arch_learning_rate,
                                   betas=(0.5, 0.999),
                                   weight_decay=xargs.arch_weight_decay)
    logger.log('w-optimizer : {:}'.format(w_optimizer))
    logger.log('a-optimizer : {:}'.format(a_optimizer))
    logger.log('w-scheduler : {:}'.format(w_scheduler))
    logger.log('criterion   : {:}'.format(criterion))
    flop, param = get_model_infos(search_model, xshape)
    #logger.log('{:}'.format(search_model))
    logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
    logger.log('search-space [{:} ops] : {:}'.format(len(search_space),
                                                     search_space))
    if xargs.arch_nas_dataset is None:
        api = None
    else:
        api = API(xargs.arch_nas_dataset)
    logger.log('{:} create API = {:} done'.format(time_string(), api))

    last_info, model_base_path, model_best_path = logger.path(
        'info'), logger.path('model'), logger.path('best')
    network, criterion = torch.nn.DataParallel(
        search_model).cuda(), criterion.cuda()
    #network, criterion = search_model.cuda(), criterion.cuda()

    if last_info.exists():  # automatically resume from previous checkpoint
        logger.log("=> loading checkpoint of the last-info '{:}' start".format(
            last_info))
        last_info = torch.load(last_info)
        start_epoch = last_info['epoch']
        checkpoint = torch.load(last_info['last_checkpoint'])
        genotypes = checkpoint['genotypes']
        valid_accuracies = checkpoint['valid_accuracies']
        search_model.load_state_dict(checkpoint['search_model'])
        w_scheduler.load_state_dict(checkpoint['w_scheduler'])
        w_optimizer.load_state_dict(checkpoint['w_optimizer'])
        a_optimizer.load_state_dict(checkpoint['a_optimizer'])
        logger.log(
            "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch."
            .format(last_info, start_epoch))
    else:
        logger.log("=> do not find the last-info file : {:}".format(last_info))
        start_epoch, valid_accuracies, genotypes = 0, {
            'best': -1
        }, {
            -1: search_model.genotype()
        }

    # start training
    start_time, search_time, epoch_time, total_epoch = time.time(
    ), AverageMeter(), AverageMeter(), config.epochs + config.warmup
    sampled_weights = []
    for epoch in range(start_epoch, total_epoch + config.t_epochs):
        w_scheduler.update(epoch, 0.0)
        need_time = 'Time Left: {:}'.format(
            convert_secs2time(
                epoch_time.val * (total_epoch - epoch + config.t_epochs),
                True))
        epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
        search_model.set_tau(xargs.tau_max -
                             (xargs.tau_max - xargs.tau_min) * epoch /
                             (total_epoch - 1))
        logger.log('\n[Search the {:}-th epoch] {:}, tau={:}, LR={:}'.format(
            epoch_str, need_time, search_model.get_tau(),
            min(w_scheduler.get_lr())))
        if epoch < total_epoch:
            search_w_loss, search_w_top1, search_w_top5, valid_a_loss , valid_a_top1 , valid_a_top5 \
                      = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger, xargs.bilevel)
        else:
            try:
                search_w_loss, search_w_top1, search_w_top5, valid_a_loss , valid_a_top1 , valid_a_top5, arch_iter \
                          = train_func(search_loader, network, criterion, w_scheduler, w_optimizer, epoch_str, xargs.print_freq, sampled_weights[0], arch_iter, logger)
            except IndexError:
                weights = search_model.sample_weights(100)
                sampled_weights.append(weights)
                arch_iter = iter(weights)
                search_w_loss, search_w_top1, search_w_top5, valid_a_loss , valid_a_top1 , valid_a_top5, arch_iter \
                          = train_func(search_loader, network, criterion, w_scheduler, w_optimizer, epoch_str, xargs.print_freq, sampled_weights[0], arch_iter, logger)

        search_time.update(time.time() - start_time)
        logger.log(
            '[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'
            .format(epoch_str, search_w_loss, search_w_top1, search_w_top5,
                    search_time.sum))
        logger.log(
            '[{:}] evaluate  : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'
            .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))

        if (epoch + 1) % 50 == 0 and not config.t_epochs:
            weights = search_model.sample_weights(100)
            sampled_weights.append(weights)
        elif (epoch + 1) == total_epoch and config.t_epochs:
            weights = search_model.sample_weights(100)
            sampled_weights.append(weights)
            arch_iter = iter(weights)
        # validate with single arch
        single_weight = search_model.sample_weights(1)[0]
        single_valid_acc = AverageMeter()
        network.eval()
        for i in range(10):
            try:
                val_input, val_target = next(valid_iter)
            except Exception as e:
                valid_iter = iter(valid_loader)
                val_input, val_target = next(valid_iter)
            n_val = val_input.size(0)
            with torch.no_grad():
                val_target = val_target.cuda(non_blocking=True)
                _, logits, _ = network(val_input, weights=single_weight)
                val_acc1, val_acc5 = obtain_accuracy(logits.data,
                                                     val_target.data,
                                                     topk=(1, 5))
                single_valid_acc.update(val_acc1.item(), n_val)
        logger.log('[{:}] valid : accuracy = {:.2f}'.format(
            epoch_str, single_valid_acc.avg))

        # check the best accuracy
        valid_accuracies[epoch] = valid_a_top1
        if valid_a_top1 > valid_accuracies['best']:
            valid_accuracies['best'] = valid_a_top1
            genotypes['best'] = search_model.genotype()
            find_best = True
        else:
            find_best = False

        if epoch < total_epoch:
            genotypes[epoch] = search_model.genotype()
            logger.log('<<<--->>> The {:}-th epoch : {:}'.format(
                epoch_str, genotypes[epoch]))
        # save checkpoint
        save_path = save_checkpoint(
            {
                'epoch': epoch + 1,
                'args': deepcopy(xargs),
                'search_model': search_model.state_dict(),
                'w_optimizer': w_optimizer.state_dict(),
                'a_optimizer': a_optimizer.state_dict(),
                'w_scheduler': w_scheduler.state_dict(),
                'genotypes': genotypes,
                'valid_accuracies': valid_accuracies
            }, model_base_path, logger)
        last_info = save_checkpoint(
            {
                'epoch': epoch + 1,
                'args': deepcopy(args),
                'last_checkpoint': save_path,
            }, logger.path('info'), logger)
        if find_best:
            logger.log(
                '<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'
                .format(epoch_str, valid_a_top1))
            copy_checkpoint(model_base_path, model_best_path, logger)
        with torch.no_grad():
            logger.log('{:}'.format(search_model.show_alphas()))
        if api is not None and epoch < total_epoch:
            logger.log('{:}'.format(api.query_by_arch(genotypes[epoch])))

        # measure elapsed time
        epoch_time.update(time.time() - start_time)
        start_time = time.time()

    network.eval()
    # Evaluate the architectures sampled throughout the search
    for i in range(len(sampled_weights) - 1):
        logger.log('Sample eval : epoch {}'.format((i + 1) * 50 - 1))
        for w in sampled_weights[i]:
            sample_valid_acc = AverageMeter()
            for i in range(10):
                try:
                    val_input, val_target = next(valid_iter)
                except Exception as e:
                    valid_iter = iter(valid_loader)
                    val_input, val_target = next(valid_iter)
                n_val = val_input.size(0)
                with torch.no_grad():
                    val_target = val_target.cuda(non_blocking=True)
                    _, logits, _ = network(val_input, weights=w)
                    val_acc1, val_acc5 = obtain_accuracy(logits.data,
                                                         val_target.data,
                                                         topk=(1, 5))
                    sample_valid_acc.update(val_acc1.item(), n_val)
            w_gene = search_model.genotype(w)
            if api is not None:
                ind = api.query_index_by_arch(w_gene)
                info = api.query_meta_info_by_index(ind)
                metrics = info.get_metrics('cifar10', 'ori-test')
                acc = metrics['accuracy']
            else:
                acc = 0.0
            logger.log(
                'sample valid : val_acc = {:.2f} test_acc = {:.2f}'.format(
                    sample_valid_acc.avg, acc))
    # Evaluate the final sampling separately to find the top 10 architectures
    logger.log('Final sample eval')
    final_archs = []
    for w in sampled_weights[-1]:
        sample_valid_acc = AverageMeter()
        for i in range(10):
            try:
                val_input, val_target = next(valid_iter)
            except Exception as e:
                valid_iter = iter(valid_loader)
                val_input, val_target = next(valid_iter)
            n_val = val_input.size(0)
            with torch.no_grad():
                val_target = val_target.cuda(non_blocking=True)
                _, logits, _ = network(val_input, weights=w)
                val_acc1, val_acc5 = obtain_accuracy(logits.data,
                                                     val_target.data,
                                                     topk=(1, 5))
                sample_valid_acc.update(val_acc1.item(), n_val)
        w_gene = search_model.genotype(w)
        if api is not None:
            ind = api.query_index_by_arch(w_gene)
            info = api.query_meta_info_by_index(ind)
            metrics = info.get_metrics('cifar10', 'ori-test')
            acc = metrics['accuracy']
        else:
            acc = 0.0
        logger.log('sample valid : val_acc = {:.2f} test_acc = {:.2f}'.format(
            sample_valid_acc.avg, acc))
        final_archs.append((w, sample_valid_acc.avg))
    top_10 = sorted(final_archs, key=lambda x: x[1], reverse=True)[:10]
    # Evaluate the top 10 architectures on the entire validation set
    logger.log('Evaluating top archs')
    for w, prev_acc in top_10:
        full_valid_acc = AverageMeter()
        for val_input, val_target in valid_loader:
            n_val = val_input.size(0)
            with torch.no_grad():
                val_target = val_target.cuda(non_blocking=True)
                _, logits, _ = network(val_input, weights=w)
                val_acc1, val_acc5 = obtain_accuracy(logits.data,
                                                     val_target.data,
                                                     topk=(1, 5))
                full_valid_acc.update(val_acc1.item(), n_val)
        w_gene = search_model.genotype(w)
        logger.log('genotype {}'.format(w_gene))
        if api is not None:
            ind = api.query_index_by_arch(w_gene)
            info = api.query_meta_info_by_index(ind)
            metrics = info.get_metrics('cifar10', 'ori-test')
            acc = metrics['accuracy']
        else:
            acc = 0.0
        logger.log(
            'full valid : val_acc = {:.2f} test_acc = {:.2f} pval_acc = {:.2f}'
            .format(full_valid_acc.avg, acc, prev_acc))

    logger.log('\n' + '-' * 100)
    # check the performance from the architecture dataset
    logger.log(
        'ProxylessNAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.
        format(total_epoch, search_time.sum, genotypes[total_epoch - 1]))
    if api is not None:
        logger.log('{:}'.format(api.query_by_arch(genotypes[total_epoch - 1])))
    logger.close()