def test_two(self): a = np.array([ #mixed strategies [10, 30], [40, 20]]) val = 25.0 vect1 = [0.5, 0.5] vect2 = [0.25, 0.75] game_p, v1, v2 = nash_equilibrium(a) self.assertTrue(check_matrix(game_p,v1,v2,val,vect1,vect2))
def fourth_test(): a = np.array([ #with saddle point [2, 7, 2], [2, 3, 2], [2, 1, 8] ]) val = 2 vect1 = [1] vect2 = [0] game_p, v1, v2 = nash_equilibrium(a) return check_matrix(game_p, v1, v2, val, vect1, vect2)
def third_test(): a = np.array([ #with saddle point [3, 9, 2, 1], [7, 8, 5, 6], [4, 7, 3, 5], [5, 6, 1, 7] ]) val = 5 vect1 = [1] vect2 = [2] game_p, v1, v2 = nash_equilibrium(a) return check_matrix(game_p, v1, v2, val, vect1, vect2)
def second_test(): a = np.array([ #mixed strategies [10, 30], [40, 20] ]) val = 25.0 vect1 = [0.5, 0.5] vect2 = [0.25, 0.75] game_p, v1, v2 = nash_equilibrium(a) return check_matrix(game_p, v1, v2, val, vect1, vect2)
def test_four(self): a = np.array([ #with saddle point [2,7,2], [2,3,2], [2,1,8]]) val = 2 vect1 = [1] vect2 = [0] game_p, v1, v2 = nash_equilibrium(a) self.assertTrue(check_matrix(game_p, v1, v2, val, vect1, vect2))
def first_test(): a = np.array([ #mixed strategies [4, 0, 6, 2, 2, 1], [3, 8, 4, 10, 4, 4], [1, 2, 6, 5, 0, 0], [6, 6, 4, 4, 10, 3], [10, 4, 6, 4, 0, 9], [10, 7, 0, 7, 9, 8] ]) vect1 = [0.0, 0.12, 0.09, 0.43, 0.33, 0.0] vect2 = [0.0, 0.0, 0.69, 0.14, 0.14, 0.01] val = 4.87 game_p, v1, v2 = nash_equilibrium(a) return check_matrix(game_p, v1, v2, val, vect1, vect2)
def test_three(self): a = np.array([ #with saddle point [3,9,2,1], [7,8,5,6], [4,7,3,5], [5,6,1,7]]) val = 5 vect1 = [1] vect2 = [2] game_p, v1, v2 = nash_equilibrium(a) self.assertTrue(check_matrix(game_p,v1,v2,val,vect1,vect2))