def INT_Q_B(A):
    # Аносов Павел
    # Проверка на целое
    if nat.MOD_NN_N(integer.ABS_Z_N(A[0]), A[1]) == [
            0
    ]:  # Проверка остатка от деления первого числа на второе
        return True  # Если ноль - число целое
    else:
        return False
Пример #2
0
 def on_btn_n_modn_released(self):
     try:
         n1 = self.get_n_n(1)
         n2 = self.get_n_n(2)
         result = natural.MOD_NN_N(n1, n2)
         self.add_history_record('%d %% %d = %d' % (
             common.N_to_num(n1),
             common.N_to_num(n2),
             common.N_to_num(result),
             ))
     except Exception as e:
         self.on_exception(e)
Пример #3
0
def open_window_nat_mod():
    layout = [
        [sg.Text('Enter two naturals')],
        [sg.Input(key='dig1')],
        [sg.Button('Mod', key='start')],
        [sg.Input(key='dig2')],
        [sg.Text(size=(400, 10), key='out')]
    ]
    window = sg.Window('The remainder of the division of natural numbers', layout, size=(460, 260), resizable=True)
    while True:
        event, values = window.read()
        if event == "start":
            window['out'].update(nat.MOD_NN_N(values['dig1'], values['dig2']))
        if event == sg.WINDOW_CLOSED:
            break
Пример #4
0
 def test_normal(self):
     number1 = [5, [6, 5, 3, 6, 4]]
     number2 = [2, [8, 4]]
     expect = [2, [6, 3]]
     result = natural.MOD_NN_N(number1, number2)
     self.assertEqual(result, expect)
Пример #5
0
 def test_small(self):
     number1 = [2, [1, 2]]
     number2 = [2, [2, 2]]
     expect = [2, [1, 2]]
     result = natural.MOD_NN_N(number1, number2)
     self.assertEqual(result, expect)
Пример #6
0
 def test_equal(self):
     number = [3, [6, 2, 6]]
     expect = [1, [0]]
     result = natural.MOD_NN_N(number, number)
     self.assertEqual(result, expect)
Пример #7
0
 def test_zero(self):
     zero = [1, [0]]
     number = [3, [6, 2, 6]]
     expect = [1, [0]]
     result = natural.MOD_NN_N(zero, number)
     self.assertEqual(result, expect)