Пример #1
0
def main():
    complex_list = []
    for file in os.listdir():
        if file.endswith(".pdb"):
            complex_list.append(file)
    complex_list_sorted = natural_sort.main(complex_list)

    df_pQ3sc = pd.DataFrame(
        columns=['name', 'ProQ2D', 'ProQRosCenD', 'ProQRosFAD', 'ProQ3D'])

    for i, cmplx in enumerate(complex_list_sorted):
        name = cmplx
        with open(name + '.proq3.global', 'r') as pq_sc:
            lines = pq_sc.readlines()
            scores = lines[1].split()
            df_pQ3sc.loc[i] = [
                name, scores[0], scores[1], scores[2], scores[3]
            ]

    return (df_pQ3sc)
Пример #2
0
def main(structure, sab_dir, exec, ProQ3_dir, decoynum):
    # The .theano directory gets very large RAM usage over time using ProQ3D
    subprocess.run(['rm', '-rf', '/home/drewaight/.theano'])
    start_time = timeit.default_timer()

    # Working directory where you want all the results stored
    topdir = os.getcwd()
    scheme = 'chothia'

    # Make a folder and copy the target structure into it
    subprocess.run(['mkdir', Path(structure).stem])
    subprocess.run(['cp', sab_dir + structure, Path(structure).stem])
    os.chdir(Path(structure).stem)

    # The biopandas_cleanup module selects the best vL vH Epitope complex from a structure. It uses Bfactors as criteria
    # the best complex is relabelled 'L' 'H' 'A' and the antibodies are renumbered by Anarci with the input scheme
    # and returns dataframes with the heavy and light stats. See biopandas_cleanup.py for more information
    struct_clean = Path(structure).stem + '_1.pdb'
    h_stats, l_stats = biopandas_cleanup.main(structure, scheme, struct_clean)

    # RaBdaB takes IgG Kappa definition pulled here from the anarci stats
    if re.search(r"IGK", str(l_stats['v_gene'])):
        light_chain = 'kappa'
    elif re.search(r"IGL", str(l_stats['v_gene'])):
        light_chain = 'lambda'
    else:
        light_chain = 'undefined'

    cwd = os.getcwd()

    # The program antibody_info_and_dock.prep.py calls structure_extract_relax.py which uses pyrosetta to run packing
    # and minimization on the input structure and extracts the releveant antibody CDR statistics and Dunbrack clusters
    # into a returned dataframe. After this the Aho numbered CDRs + 3 stem residues are set to 1.0 in the Bfactor column
    # and all other residues are set to 0.0 the antibody_info_and_dock.prep then separates the LH and A molecules
    # randomizes the orientation and slides them back together in preparation for docking.
    abdf = antibody_info_and_dock_prep.main(cwd, struct_clean, light_chain)

    h_stats.to_json('h_stats.json')
    l_stats.to_json('l_stats.json')
    abdf.to_json('abdf.json')

    # At this point we want to fork the two prepared structures into the broad CDR definition above, and a targeted
    # defintion using Parapred. The randomized LH structure is copied with the ppd extension to denote Parapred scoring
    test_str = Path(struct_clean).stem + '_rand_LH.pdb'
    test2_str = Path(struct_clean).stem + '_ppd_rand_LH.pdb'
    subprocess.run(['cp', test_str, test2_str])
    recep_str = Path(struct_clean).stem + '_rand_A.pdb'
    init_str = Path(struct_clean).stem + '_init.pdb'
    print([test_str, recep_str, init_str])

    # Execute parapred on the copied structure
    subprocess.run(['parapred', 'pdb', test2_str])

    # The bfactor_to_blocking_biopandas.py program simply converts all residues with bfactor == 0 to the residue BLK
    # which avoids rigid body docking on these residues (ZDOCK and Megadock) standard
    bfactor_to_blocking_biopandas.main(test_str)
    bfactor_to_blocking_biopandas.main(test2_str)
    block_cdr = Path(test_str).stem + "_blocking.pdb"
    parap_cdr = Path(test2_str).stem + "_blocking.pdb"

    # Writing the jobs table for the megadock program
    with open("SAMPLE.table", "w") as f:
        f.write("TITLE= sample jobs\n")
        f.write("PARAM= -R $1 -L $2\n")
        f.write(block_cdr + "\t" + recep_str + "\n")
        f.write(parap_cdr + "\t" + recep_str)

    # Execute megadock GPU docking on both the broader CDR and targeted Parapred treated structures
    subprocess.run([
        '/usr/bin/mpiexec', '-n', '16', '--use-hwthread-cpus',
        'megadock-gpu-dp', '-v', '1.0', '-D', '-t', '3', '-N', '54000', '-tb',
        'SAMPLE.table'
    ])
    # subprocess.run(['/usr/bin/mpiexec', '-n', '16', '--use-hwthread-cpus', 'megadock-gpu-dp',
    #                '-tb', 'SAMPLE.table'])

    # Everything gets moved into the megadock folder
    subprocess.run(['mkdir', 'megadock'])
    subprocess.run([
        'mv',
        Path(struct_clean).stem + '_rand_LH_blocking-' +
        Path(struct_clean).stem + '_rand_A.out', 'megadock'
    ])
    subprocess.run([
        'mv',
        Path(struct_clean).stem + '_ppd_rand_LH_blocking-' +
        Path(struct_clean).stem + '_rand_A.out', 'megadock'
    ])
    subprocess.run(['cp', recep_str, 'megadock'])
    subprocess.run(['cp', test_str, 'megadock'])
    subprocess.run(['cp', test2_str, 'megadock'])
    subprocess.run(['cp', init_str, 'megadock'])
    os.chdir('megadock')
    subprocess.run(['mv', init_str, 'complex_0.pdb'])
    subprocess.run([
        'mv',
        Path(struct_clean).stem + '_rand_LH_blocking-' +
        Path(struct_clean).stem + '_rand_A.out',
        Path(struct_clean).stem + '_complex.out'
    ])
    subprocess.run([
        'mv',
        Path(struct_clean).stem + '_ppd_rand_LH_blocking-' +
        Path(struct_clean).stem + '_rand_A.out',
        Path(struct_clean).stem + '_ppd_complex.out'
    ])

    # The zrank_processing.py module rescores the megadock output files using the zrank program, it calls the mpi
    # enabled module zrank_mpi.py and returns a dataframe of the results sorted by zscore
    infile = Path(struct_clean).stem + '_complex.out'
    infile2 = Path(struct_clean).stem + '_ppd_complex.out'
    df_zsc = zrank_processing.main(infile, recep_str, test_str, exec)
    df2_zsc = zrank_processing.main(infile2, recep_str, test2_str, exec)

    # We want to keep trach of which method performs better, so add a identifier column before merging and resorting the
    # zranked datasets
    df_zsc['method'] = "CDR"
    df2_zsc['method'] = "Parapred"
    df_zsc = pd.concat([df_zsc, df2_zsc], ignore_index=True)
    df1 = df_zsc.sort_values(by=['zrank'])
    df1 = df1.reset_index(drop=True)

    # Reformat the merged zranked dataframes from back into megadock format
    outfile = Path(struct_clean).stem + '_complex_zranked.out'
    outfp = open(outfile, 'w')
    with open(infile, 'r') as fp:
        for i, line in enumerate(fp):
            if i < 4:
                outfp.write(line)
    df1['rot1'] = df1['rot1'].map(lambda x: '%.6f' % x)
    df1['rot2'] = df1['rot2'].map(lambda x: '%.6f' % x)
    df1['rot3'] = df1['rot3'].map(lambda x: '%.6f' % x)
    df1['score'] = df1['score'].map(lambda x: '%.2f' % x)
    df1['zrank'] = df1['zrank'].map(lambda x: '%.5f' % x)

    # We want to keep track of the zranked stats, this data is split off as dfout, the rest gets re-written to the
    # outfile for decoy generation
    df3 = df1.drop(['id', 'zrank', 'method'], axis=1)
    df3.to_csv(outfp, sep='\t', mode='a', header=False, index=False)
    dfout = df1.drop(
        ['rot1', 'rot2', 'rot3', 'vox1', 'vox2', 'vox3', 'id', 'score'],
        axis=1)
    dfout['complex'] = dfout.index + 1
    print(dfout.head())
    dfout.to_csv('zrank.csv')
    dfout.to_json('zrank.json')

    # The decoygen.py program converts the zranked list of rotational coordinates to back into pdb complexes. The number
    # of complexes returned is set by the decoynum variable, complex_0.pdb (native complex) is added to the beginning of
    # the list as the reference.
    zinfile = Path(struct_clean).stem + '_complex_zranked.out'
    complexes = decoygen.main(recep_str, zinfile, decoynum, test_str)
    complexes.append('complex_0.pdb')
    complex_list = natural_sort.main(complexes)
    with open('relax_list.txt', 'w') as r:
        for cmplx in complex_list:
            r.write(cmplx + '\n')

    cwd = os.getcwd()
    jsonfile = "relaxed_list.json"
    reference = 'complex_0_relaxed.pdb'

    # The relax_mpi.py program uses mpi to run the drew_relax.py program over 16 cores. The output is a json file of the
    # relaxed and interface parameters of each complex
    print('Running Relax: ' + Path(structure).stem)

    bar = progressbar.ProgressBar(max_value=progressbar.UnknownLength).start()
    p = subprocess.Popen([
        'mpiexec', '-n', '16', 'python', exec + 'relax_mpi.py',
        'relax_list.txt', cwd
    ],
                         stdout=subprocess.PIPE,
                         stderr=subprocess.PIPE)
    result = []
    while p.stdout is not None:
        bar.update()
        line = p.stdout.readline()
        result.append(line.decode('UTF-8').rstrip('\r'))
        if not line:
            print("\n")
            p.stdout.flush()
            break
    with open("relax_mpi.log", 'w') as f:
        f.write(''.join(result))

    # The rmsd_align_mpi.py program uses mpi to run rmsd.py which aligns all of the relaxed complexes by their Antigen
    # chain, and calculates the RMSD value from the reference pose
    print('Align and Rmsd:')
    subprocess.run([
        'mpiexec', '-n', '16', 'python', exec + 'rmsd_align_mpi.py', cwd,
        jsonfile, reference
    ],
                   stdout=subprocess.PIPE,
                   stderr=subprocess.PIPE)

    # Read back in the output json file from the above mpi programs
    ros_df = pd.read_json(cwd + '/relaxed_list_rmsd.json')
    ros_df = ros_df.drop(['dG_cross', 'dG_cross/dSASAx100', 'packstat'],
                         axis=1)

    # We want ProQ3D to use our relaxed structures write the list for it to process
    with open('proQ3_list.txt', 'w') as p:
        for cmplx in complex_list:
            pandas_anarci_numberer.main(
                Path(cmplx).stem + '_relaxed.pdb', 'chothia',
                Path(cmplx).stem + '_relaxed_cho.pdb')
            subprocess.run([
                'bash', exec + 'ProQDock_prepare.sh',
                Path(cmplx).stem + '_relaxed_cho.pdb'
            ])
            p.write(Path(cmplx).stem + '_relaxed_cho_reres.pdb' + '\n')

    # ProQ3D is a big complicated program. It is called using GNU parallel through the proq3_all.sh script, if there is
    # not yet a profile one is created in the top level working directory. All ProQ3D output is put into the run_all
    # directory
    try:
        print('ProQ3 processing')
        subprocess.run([
            ProQ3_dir + 'proq3_all.sh', './complex.fasta', 'proQ3_list.txt',
            topdir + '/' + Path(structure).stem + '_profile', 'run_all', '16'
        ],
                       stdout=subprocess.PIPE)
    except:
        print('ProQ3 parallel error')

    os.chdir('run_all')
    ProQ_list = []
    for file in os.listdir():
        if file.endswith(".pdb"):
            ProQ_list.append(file)
    ProQ_list_sorted = natural_sort.main(ProQ_list)

    # The collector.py program scrapes the scores from the proq3.global files and returns a dataframe
    total_sc = collector.main()
    # Join the rosetta scores
    total_sc = total_sc.join(ros_df)
    total_sc.to_json('total_sc.json')
    # Merge the zrank data into the total scores
    total_sc = total_sc.merge(dfout, how='left', on='complex')
    total_sc['structure'] = Path(structure).stem
    abdf['structure'] = Path(structure).stem
    # Merge the antibody information the single statistics for the antibody including CDR classifications are populated
    # to all the complexes
    total_sc = total_sc.merge(abdf, how='right')
    # Shuffle important columns to the front
    col = total_sc.pop("zrank")
    total_sc.insert(0, col.name, col)
    col = total_sc.pop("method")
    total_sc.insert(0, col.name, col)
    col = total_sc.pop("structure")
    total_sc.insert(0, col.name, col)
    print(total_sc)
    os.chdir('../../')
    outfp = Path(structure).stem + '_TOTAL.csv'
    # Sort by rmsd and output
    total_sc = total_sc.sort_values(by=['rmsd'])
    total_sc.to_csv(outfp, sep='\t', mode='a')
    total_sc.to_json(Path(structure).stem + '_TOTAL.json')
    stop_time = timeit.default_timer()
    time_tot = str(stop_time - start_time)
    with open('time.txt', 'w') as t:
        t.write(time_tot)
    os.chdir('..')
    # Return the dataframe and thats it!
    return (total_sc)
Пример #3
0
def main(structure, exec, ProQ3_dir, decoynum):
    start_time = timeit.default_timer()
    topdir = os.getcwd()
    chain = subprocess.run(['pdbcount', structure], stdout=subprocess.PIPE)
    counts = chain.stdout.split()
    if int(counts[1]) > 3:
        print("too many chains bud")
        return ()
    else:
        print(chain.stdout.decode('utf-8'))
    chain_check.main(structure)
    subprocess.run(['mkdir', Path(structure).stem])
    subprocess.run(['mv', structure, Path(structure).stem])
    os.chdir(Path(structure).stem)
    docking_structure_randomizer.main(structure)
    test_str = Path(structure).stem + '_rand_LH.pdb'
    print(test_str)
    recep_str = Path(structure).stem + '_rand_A.pdb'
    out_str = Path(test_str).stem + '_cho.pdb'
    print(out_str)
    scheme = 'chothia'
    anarci_to_pdb.main(test_str, scheme, out_str)
    subprocess.run(['parapred', 'pdb', out_str])
    parapred_to_blocking.main(out_str, recep_str)
    subprocess.run([
        '/usr/bin/mpiexec', '-n', '16', '--use-hwthread-cpus',
        'megadock-gpu-dp', '-v', '1.0', '-D', '-t', '3', '-N', '54000', '-tb',
        'SAMPLE.table'
    ])
    #subprocess.run(['/usr/bin/mpiexec', '-n', '16', '--use-hwthread-cpus', 'megadock-gpu-dp',
    #                '-tb', 'SAMPLE.table'])
    subprocess.run(['mkdir', 'megadock'])
    subprocess.run([
        'mv',
        Path(structure).stem + '_rand_LH_cho_blocking-' +
        Path(structure).stem + '_rand_A.out', 'megadock'
    ])
    subprocess.run(['cp', recep_str, 'megadock'])
    subprocess.run(['cp', test_str, 'megadock'])
    subprocess.run(['cp', Path(structure).stem + '.clean.pdb', 'megadock'])
    os.chdir('megadock')
    subprocess.run(
        ['mv', Path(structure).stem + '.clean.pdb', 'complex_0.pdb'])
    subprocess.run([
        'mv',
        Path(structure).stem + '_rand_LH_cho_blocking-' +
        Path(structure).stem + '_rand_A.out',
        Path(structure).stem + '_complex.out'
    ])
    infile = Path(structure).stem + '_complex.out'
    df_zsc = zrank_processing.main(infile, recep_str, test_str, exec)
    print(df_zsc.describe())
    zinfile = Path(structure).stem + '_complex_zranked.out'
    complex_list = decoygen.main(recep_str, zinfile, decoynum, test_str)

    subprocess.run([exec + 'ProQDock_prepare.sh', 'complex_0.pdb'])

    with open('proQ3_list.txt', 'w') as p:
        p.write('complex_0_merge.pdb' + '\n')
        for cmplx in complex_list:
            subprocess.run([exec + 'ProQDock_prepare.sh', cmplx])
            p.write(Path(cmplx).stem + '_merge.pdb' + '\n')

    try:
        print('ProQ3 processing')
        subprocess.run([
            ProQ3_dir + 'proq3_all.sh', './complex.fasta', 'proQ3_list.txt',
            topdir + '/' + Path(structure).stem + '_profile', './run_all', '16'
        ],
                       stdout=subprocess.PIPE)
    except:
        print('ProQ3 parallel error')

    os.chdir('run_all')
    ProQ_list = []
    for file in os.listdir():
        if file.endswith(".pdb"):
            ProQ_list.append(file)
    ProQ_list_sorted = natural_sort.main(ProQ_list)

    total_sc = collector.main()
    rmsd_df = pd.DataFrame(columns=['rmsd', 'all_rmsd', 'sc_score', 'p2sc'])
    for i, p_cmplx in enumerate(ProQ_list_sorted):
        rmd_sc = rmsd.main('../../' + structure, p_cmplx)
        rmsd_df.loc[i] = [
            rmd_sc[0][0], rmd_sc[0][1], rmd_sc[0][2], rmd_sc[0][3]
        ]

    total_sc = total_sc.join(rmsd_df)
    os.chdir('../../')
    outfp = Path(structure).stem + '_TOTAL.csv'
    total_sc.to_csv(outfp, sep='\t', mode='a')
    stop_time = timeit.default_timer()
    time_tot = str(start_time - stop_time)
    with open('time.txt', 'w') as t:
        t.write(time_tot)
    os.chdir('..')
    return (total_sc)
Пример #4
0
import re

sab_dir = '/home/drewaight/hdd1/sabdab_short/'
exec = '/media/hdd1/proQ3drewdock_big/drewdock_exec/'
ProQ3_dir = '/home/drewaight/proq3/'
decoynum = 200

cwd = os.getcwd()
print(cwd)
score = pd.DataFrame()
master_list = []
for file in os.listdir(sab_dir):
    if file.endswith(".pdb"):
        master_list.append(file)

master_list_sorted = natural_sort.main(master_list)
for structure in master_list_sorted:
    if os.path.isdir(cwd + '/' + Path(structure).stem):
        print('Looks like you already did ' + Path(structure).stem + ' bud.')
        continue
    else:
        print('You didnt do ' + Path(structure).stem + ' yet')
        try:
            print("############################# NOW WORKING ON " + structure +
                  " ##########################################")
            sc = drewdock_biopandas.main(structure, sab_dir, exec, ProQ3_dir,
                                         decoynum)
            score = score.append(sc)
            score.to_csv('TOTAL.csv', sep='\t', mode='a')
        except:
            dir = exec + "../"
Пример #5
0
def main(structure, sab_dir, exec, ProQ3_dir, decoynum):
    subprocess.run(['rm', '-rf', '/home/drewaight/.theano'])
    start_time = timeit.default_timer()
    topdir = os.getcwd()
    scheme = 'chothia'
    subprocess.run(['mkdir', Path(structure).stem])
    subprocess.run(['cp', sab_dir + structure, Path(structure).stem])
    os.chdir(Path(structure).stem)
    struct_clean = Path(structure).stem + '_1.pdb'
    h_stats, l_stats = biopandas_cleanup.main(structure, scheme, struct_clean)
    docking_structure_randomizer.main(struct_clean)
    test_str = Path(struct_clean).stem + '_rand_LH.pdb'
    recep_str = Path(struct_clean).stem + '_rand_A.pdb'
    init_str = Path(struct_clean).stem + '_init.pdb'
    print([test_str, recep_str, init_str])
    subprocess.run(['parapred', 'pdb', test_str])
    parapred_to_blocking_biopandas.main(test_str, recep_str)

    subprocess.run([
        '/usr/bin/mpiexec', '-n', '16', '--use-hwthread-cpus',
        'megadock-gpu-dp', '-v', '1.0', '-D', '-t', '3', '-N', '54000', '-tb',
        'SAMPLE.table'
    ])
    # subprocess.run(['/usr/bin/mpiexec', '-n', '16', '--use-hwthread-cpus', 'megadock-gpu-dp',
    #                '-tb', 'SAMPLE.table'])

    subprocess.run(['mkdir', 'megadock'])
    subprocess.run([
        'mv',
        Path(struct_clean).stem + '_rand_LH_blocking-' +
        Path(struct_clean).stem + '_rand_A.out', 'megadock'
    ])
    subprocess.run(['cp', recep_str, 'megadock'])
    subprocess.run(['cp', test_str, 'megadock'])
    subprocess.run(['cp', init_str, 'megadock'])
    os.chdir('megadock')
    subprocess.run(['mv', init_str, 'complex_0.pdb'])
    subprocess.run([
        'mv',
        Path(struct_clean).stem + '_rand_LH_blocking-' +
        Path(struct_clean).stem + '_rand_A.out',
        Path(struct_clean).stem + '_complex.out'
    ])
    infile = Path(struct_clean).stem + '_complex.out'
    df_zsc = zrank_processing.main(infile, recep_str, test_str, exec)
    print(df_zsc.describe())
    zinfile = Path(struct_clean).stem + '_complex_zranked.out'
    complex_list = decoygen.main(recep_str, zinfile, decoynum, test_str)

    subprocess.run(['bash', exec + 'ProQDock_prepare.sh', 'complex_0.pdb'])

    with open('proQ3_list.txt', 'w') as p:
        p.write('complex_0_reres.pdb' + '\n')
        for cmplx in complex_list:
            subprocess.run(['bash', exec + 'ProQDock_prepare.sh', cmplx])
            p.write(Path(cmplx).stem + '_reres.pdb' + '\n')

    try:
        print('ProQ3 processing')
        subprocess.run([
            ProQ3_dir + 'proq3_all.sh', './complex.fasta', 'proQ3_list.txt',
            topdir + '/' + Path(structure).stem + '_profile', 'run_all', '16'
        ],
                       stdout=subprocess.PIPE)
    except:
        print('ProQ3 parallel error')

    os.chdir('run_all')
    ProQ_list = []
    for file in os.listdir():
        if file.endswith(".pdb"):
            ProQ_list.append(file)
    ProQ_list_sorted = natural_sort.main(ProQ_list)

    total_sc = collector.main()
    rmsd_df = pd.DataFrame(columns=['rmsd', 'all_rmsd', 'sc_score', 'p2sc'])
    for i, p_cmplx in enumerate(ProQ_list_sorted):
        rmd_sc = rmsd.main('../../' + struct_clean, p_cmplx)
        rmsd_df.loc[i] = [
            rmd_sc[0][0], rmd_sc[0][1], rmd_sc[0][2], rmd_sc[0][3]
        ]

    total_sc = total_sc.join(rmsd_df)
    os.chdir('../../')
    outfp = Path(structure).stem + '_TOTAL.csv'
    total_sc.to_csv(outfp, sep='\t', mode='a')
    h_stats.to_csv(Path(structure).stem + 'H_STATS.csv', sep='\t')
    l_stats.to_csv(Path(structure).stem + 'L_STATS.csv', sep='\t')
    stop_time = timeit.default_timer()
    time_tot = str(start_time - stop_time)
    with open('time.txt', 'w') as t:
        t.write(time_tot)
    os.chdir('..')
    return (total_sc)
    gc.collect()