Пример #1
0
def nets_player_plus_minus_by_year(player_id):
    id = player_id
    player_year_info = player.PlayerYearOverYearSplits(id).by_year()
    plus_minus = "N/A"
    for info in player_year_info:
        if info["GROUP_VALUE"] == "2017-18":
            plus_minus = info["PLUS_MINUS"]
        else:
            continue

    return plus_minus
Пример #2
0
    def getPlayerStats(self, measure_type="Base"):
        yoy = player.PlayerYearOverYearSplits(measure_type=measure_type,
                                              player_id=self.player_id)
        json = yoy.json
        total = []
        header = self.__trimData__(measure_type,
                                   json["resultSets"][0]["headers"])
        for yeardata in json["resultSets"][1]["rowSet"]:
            year = yeardata[-1]
            yeardata = self.__trimData__(measure_type, yeardata)
            total.append((year, yeardata))

        self.stats = dict(total)
        self.header = header
        self.projected_salaries = self.getProjectedSalary()

        return total
Пример #3
0
def test():
    pid = get_player('Tim', 'Duncan')
    vs_pid = get_player('Stephen', 'Curry')
    assert player.PlayerList()
    assert player.PlayerSummary(pid)
    # assert player.PlayerGeneralSplits(pid)
    # assert player.PlayerOpponentSplits(pid)
    assert player.PlayerLastNGamesSplits(pid)
    assert player.PlayerInGameSplits(pid)
    assert player.PlayerClutchSplits(pid)
    # assert player.PlayerShootingSplits(pid)
    assert player.PlayerPerformanceSplits(pid)
    assert player.PlayerYearOverYearSplits(pid)
    assert player.PlayerCareer(pid)
    assert player.PlayerProfile(pid)
    assert player.PlayerGameLogs(pid)
    assert player.PlayerShotTracking(pid)
    assert player.PlayerReboundTracking(pid)
    assert player.PlayerPassTracking(pid)
    assert player.PlayerDefenseTracking(pid)
    # assert player.PlayerShotLogTracking(pid)
    # assert player.PlayerReboundLogTracking(pid)
    assert player.PlayerVsPlayer(pid, vs_pid)
Пример #4
0
    def testAll(self):
        assert player.PlayerList()
        assert player.PlayerSummary(self.playerId)
        # assert player.PlayerGeneralSplits(self.playerId)
        # assert player.PlayerOpponentSplits(self.playerId)
        assert player.PlayerLastNGamesSplits(self.playerId)
        assert player.PlayerInGameSplits(self.playerId)
        assert player.PlayerClutchSplits(self.playerId)
        # assert player.PlayerShootingSplits(self.playerId)
        assert player.PlayerPerformanceSplits(self.playerId)
        assert player.PlayerYearOverYearSplits(self.playerId)

        assert player.PlayerCareer(self.playerId)

        assert player.PlayerProfile(self.playerId)
        assert player.PlayerGameLogs(self.playerId)
        assert player.PlayerShotTracking(self.playerId)
        assert player.PlayerReboundTracking(self.playerId)
        assert player.PlayerPassTracking(self.playerId)
        assert player.PlayerDefenseTracking(self.playerId)
        # assert player.PlayerShotLogTracking(self.playerId)
        # assert player.PlayerReboundLogTracking(self.playerId)
        assert player.PlayerVsPlayer(self.playerId, self.vs_playerId)
def get_fantasy_points_by_player(player_first_name, player_last_name):
    player_stats = None

    print("Loading: Getting Fantasy Point for " + player_first_name + " " +
          player_last_name)

    try:
        player_id = player.get_player(player_first_name, player_last_name,
                                      CURRENT_SEASON, 0, True)
        player_stats = player.PlayerYearOverYearSplits(
            player_id, 0, "Base", "PerGame", "N", "N", "N", League.Default,
            CURRENT_SEASON, 'Regular Season', "0", "", "", "0", "", '', '',
            '0', '', '', '', '0', '', '0').overall()[0]
    except StopIteration:
        print("Player not found")
    except IndexError:
        print(0)
        return 0

    fgm = player_stats["FGM"]
    fgmi = -0.5 * (player_stats["FGA"] - player_stats["FGM"])
    ftm = player_stats["FTM"]
    ftmi = -0.5 * (player_stats["FTA"] - player_stats["FTM"])
    fg3m = player_stats["FG3M"]
    reb = player_stats["REB"]
    ast = player_stats["AST"]
    stl = player_stats["STL"]
    blk = player_stats["BLK"]
    to = -0.25 * (player_stats["TOV"])
    pts = player_stats["PTS"]

    fantasy_points = round(
        fgm + fgmi + ftm + ftmi + fg3m + reb + ast + stl + blk + to + pts, 1)

    print(fantasy_points)

    return fantasy_points
Пример #6
0
def extract_data(player_id):
	player_object = player.PlayerYearOverYearSplits(player_id)
	player_data = player_object.by_year()
	rookie_data = player_data.tail(n=1)
Пример #7
0
def generate_overalls_df(player_id_lst, year):
    lst_of_dicts = []
    for id in player_id_lst:
        print id
        stats = player.PlayerYearOverYearSplits(id).by_year()
        stats = stats[stats.GROUP_VALUE == year]
        if not stats.empty:
            gp = float(stats.GP)
            min_game = float(stats.MIN)
            ftm = float(stats.FTM)
            fta = float(stats.FTA)
            oreb = float(stats.OREB)
            dreb = float(stats.DREB)
            reb = float(stats.REB)
            ast = float(stats.AST)
            tov = float(stats.TOV)
            stl = float(stats.STL)
            blk = float(stats.BLK)
            blk_a = float(stats.BLKA)
            pfd = float(stats.PFD)
            pf = float(stats.PF)

            lst_of_dicts.append({
                'player_id': str(id),
                'gp': gp,
                'min_game': min_game,
                'ftm': ftm,
                'fta': fta,
                'oreb': oreb,
                'dreb': dreb,
                'reb': reb,
                'ast': ast,
                'tov': tov,
                'stl': stl,
                'blk': blk,
                'blk_a': blk_a,
                'pfd': pfd,
                'pf': pf
            })
            # time.sleep(1)

        else:
            lst_of_dicts.append({
                'player_id': str(id),
                'gp': 0,
                'min_game': 0,
                'ftm': 0,
                'fta': 0,
                'oreb': 0,
                'dreb': 0,
                'reb': 0,
                'ast': 0,
                'tov': 0,
                'stl': 0,
                'blk': 0,
                'blk_a': 0,
                'pfd': 0,
                'pf': 0
            })
            # time.sleep(1)

    overalls_df = pd.DataFrame(lst_of_dicts)
    overalls_df.set_index('player_id', inplace=True, drop=True)
    return overalls_df
Пример #8
0
    def __init__(self,
                 playerId,
                 teamId,
                 paceAdjustment,
                 position=None,
                 salary=0,
                 freeAgent=False):
        self.playerId = playerId
        self.teamId = teamId
        self.paceAdjustment = paceAdjustment

        # Access stats from NBA Stats through nba_py module
        summary = player.PlayerSummary(playerId)
        info = summary.info()[0]
        header = player.PlayerSummary(playerId).headline_stats()[0]

        # Determine age in years from birthdate given in profile
        # NOTE: Age is current age today, not during this season
        bday = info['BIRTHDATE']
        date = datetime.date(int(bday[:4]), int(bday[5:7]), int(bday[8:10]))
        self.age = (datetime.date.today() - date).days / 365.0
        years = player.PlayerYearOverYearSplits(playerId).by_year()
        i = 0

        # find stats from the current season, if stats incomplete for that season return
        # an earlier season
        while (str(years[i]['GROUP_VALUE']) != constants.SEASON
               and (i < len(years) - 1)):
            i += 1
        if (i == len(years)):
            pc = years[len(years) - 1]
        else:
            pc = years[i]

        self.isFreeAgent = freeAgent
        self.name = str(header['PLAYER_NAME'])
        if (playerId in constants.HUSTLE.keys()):
            (sa, df, lbr, cd, cs) = constants.HUSTLE[playerId]
        else:
            (sa, df, lbr, cd, cs) = constants.HUSTLE_AVG
        self.sa = sa  # screen assists
        self.df = df  # deflections
        self.lbr = lbr  # loose balls recovered
        self.cd = cd  # charges drawn
        self.cs = cs  # contested shots
        self.tp = pc['FG3M'] * 1.0  # three points made
        self.mp = pc['MIN'] * 1.0  # minutes played
        self.ast = pc['AST'] * 1.0  # assists
        self.fg = pc['FGM'] * 1.0  # field goals
        self.tov = pc['TOV'] * 1.0  # turnovers
        self.fga = pc['FGA'] * 1.0  # field goals attempted
        self.fta = pc['FTA'] * 1.0  # free throws attempted
        self.ft = pc['FTM'] * 1.0  # free throws made
        self.stl = pc['STL'] * 1.0  # steals
        self.orb = pc['OREB'] * 1.0  # offensive rebounds
        self.blk = pc['BLK'] * 1.0  # blocks
        self.pf = pc['PF'] * 1.0  # personal fouls
        self.pts = pc['PTS'] * 1.0  # points
        self.trb = pc['REB'] * 1.0  # total rebounds
        self.drb = pc['DREB'] * 1.0  # defensive rebounds
        self.salary = salary  # cost of player
        if (position == None):
            self.position = str(info['POSITION'])  # position of player
        else:
            self.position = position
Пример #9
0
def get_player_stat(player_id):
    """
    Takes player NBA ID and returns a data frame containing player performance
    data such as shooting, blocking, rebound etc...
    """
    # Extracting shooting and blocking columns
    player_shot_block_raw = player.PlayerShootingSplits(player_id, season='2018-19').shot_areas()

    if player_shot_block_raw.shape[0] == 0:
        raise NoDataError("No data for {}".format(player_id))

    player_shot_and_block_by_area = player_shot_block_raw.T
    player_shot_and_block_by_area.columns = player_shot_and_block_by_area.loc['GROUP_VALUE']
    player_shot_and_block_by_area = player_shot_and_block_by_area.loc[[
        'FGA', 'BLKA'], "Restricted Area":"Above the Break 3"]

    player_shot_by_area = player_shot_and_block_by_area.loc[["FGA"], :]
    player_block_by_area = player_shot_and_block_by_area.loc[["BLKA"], :]

    # Use a dict to map old col name to new col name, using dict is required
    # because the API sometimes returns inconsistent column order and number
    # of cols
    shot_col_map = {"Restricted Area": 'shot_res',
                    "In The Paint (Non-RA)": 'shot_in_paint',
                    "Mid-Range": 'shot_mid_range',
                    'Left Corner 3': 'shot_lcorner_3',
                    'Right Corner 3': 'shot_rcorner_3',
                    'Above the Break 3': 'shot_above_3'}

    block_col_map = {"Restricted Area": 'block_res',
                     "In The Paint (Non-RA)": 'block_in_paint',
                     "Mid-Range": 'block_mid_range',
                     'Left Corner 3': 'block_lcorner_3',
                     'Right Corner 3': 'block_rcorner_3',
                     'Above the Break 3': 'block_above_3'}

    # Applying the column name map
    player_shot_by_area = player_shot_by_area.rename(columns=shot_col_map)
    player_block_by_area = player_block_by_area.rename(columns=block_col_map)

    # Total attempted shots and blocks
    total_shots = player_shot_by_area.loc['FGA', :].sum()
    total_blocks = player_block_by_area.loc['BLKA', :].sum()

    # Normalize all stats by total shots to get relative frequencies for each
    # player
    player_shot_by_area /= total_shots + 1e-5
    player_block_by_area /= total_blocks + 1e-5

    # Record total attempted shots and blocks
    player_shot_by_area['fga'] = total_shots
    player_block_by_area['blka'] = total_blocks

    # PlayerYearOverYearSplits is the end point we will be calling
    # to get player stats aside from shooting and blocking
    # Take the most recent 2 years, and then add them
    rebound_assist = player.PlayerYearOverYearSplits(
        player_id, per_mode="Per48").by_year().iloc[:2, :]

    cols_of_interest = ['OREB', 'DREB', 'AST', 'STL', "MIN"]

    rebound_assist = rebound_assist[cols_of_interest]
    rebound_assist.columns = [c.lower() for c in rebound_assist.columns]
    rebound_assist_summed = pd.DataFrame(rebound_assist.sum()).T

    # Finally, concatnate the dataframes together
    player_stat = pd.concat([player_shot_by_area.reset_index(drop=True),
                             player_block_by_area.reset_index(drop=True),
                             rebound_assist_summed.reset_index(drop=True)],
                            axis=1)
    player_stat = player_stat.rename({0: player_id})

    return player_stat