Пример #1
0
def test_random_erase_recomputation(ctx, func_name, seed, prob, area_ratios,
                                    aspect_ratios, replacements, n, share,
                                    inplace, base_axis, func_seed,
                                    channel_last):
    if channel_last and func_name == "RandomErase":
        pytest.skip("RandomErase with channel_last is only supported in CUDA.")

    from nbla_test_utils import recomputation_test

    rng = np.random.RandomState(seed)
    b, c, h, w = 4, 3, 32, 32
    ishape = [b, h, w, c] if channel_last else [b, c, h, w]
    vinputs = [nn.Variable(ishape)]

    func_kwargs = {
        'prob': prob,
        'area_ratios': area_ratios,
        'aspect_ratios': aspect_ratios,
        'replacements': replacements,
        'n': n,
        'share': share,
        'inplace': inplace,
        'base_axis': base_axis,
        'seed': seed,
        'channel_last': channel_last
    }

    recomputation_test(rng=rng,
                       func=F.random_erase,
                       vinputs=vinputs,
                       func_args=[],
                       func_kwargs=func_kwargs,
                       ctx=ctx)
Пример #2
0
def test_convolution_2d_recomputation(inshape, kernel, outmaps, pad, stride,
                                      dilation, group, with_bias, seed,
                                      num_bits, inq_iterations,
                                      selection_algorithm, func_seed, ctx, func_name):
    from nbla_test_utils import recomputation_test
    rng = np.random.RandomState(seed)
    # Input
    inputs = [rng.randn(*inshape).astype(np.float32)]
    # Weights
    inmaps = inshape[-3]
    kshape = (outmaps,) + (inmaps // group,) + kernel
    inputs += [rng.randn(*kshape).astype(np.float32)]
    # Indices
    inputs += [np.random.randint(2, size=kshape)]
    # Bias
    if with_bias:
        inputs += [rng.randn(outmaps).astype(np.float32)]
    else:
        inputs += [None]

    base_axis = len(inshape) - 3
    func_args = [base_axis, pad, stride, dilation, group, num_bits,
                 inq_iterations, selection_algorithm, func_seed]

    vinputs = []
    for i in inputs:
        if i is None:
            vinputs.append(None)
        else:
            vinputs.append(nn.Variable.from_numpy_array(i))

    recomputation_test(rng=rng, func=F.inq_convolution, vinputs=vinputs,
                       func_args=func_args, func_kwargs={}, ctx=ctx)
Пример #3
0
def test_randn_forward_backward(seed, ctx, func_name, mu, sigma, shape):
    with nn.context_scope(ctx):
        o = F.randn(mu, sigma, shape, seed=seed)
    assert o.shape == tuple(shape)
    assert o.parent.name == func_name
    o.forward()
    if o.size >= 10000:
        est_mu = o.d.mean()
        est_sigma = o.d.std()
        np.isclose(est_mu, mu, atol=sigma)
        np.isclose(est_sigma, sigma, atol=sigma)
    else:
        data = []
        for i in range(10000):
            o.forward()
            data += [o.d.copy()]
        est_mu = np.mean(np.array(data))
        est_sigma = np.std(np.array(data))
        np.isclose(est_mu, mu, atol=sigma)
        np.isclose(est_sigma, sigma, atol=sigma)

    # Checking recomputation
    func_args = [mu, sigma, shape, seed]
    recomputation_test(rng=None,
                       func=F.randn,
                       vinputs=[],
                       func_args=func_args,
                       func_kwargs={},
                       ctx=ctx)
Пример #4
0
def test_rand_gamma_forward(seed, ctx, func_name, k, theta, shape):
    with nn.context_scope(ctx):
        o = F.rand_gamma(k, theta, shape, seed=seed)
    assert o.shape == tuple(shape)
    assert o.parent.name == func_name
    o.forward()
    if o.size > 10000:
        est_mu = o.d.mean()
        est_sigma = o.d.std()
    else:
        data = []
        for i in range(1000000 // o.size):
            o.forward()
            data += [o.d.copy()]
        est_mu = np.mean(np.array(data))
        est_sigma = np.std(np.array(data))

    mu = k * theta  # theoretical mean
    var = k * theta * theta
    sigma = np.sqrt(var)  # theoretical std

    assert np.isclose(est_mu, mu, atol=5e-2)
    assert np.isclose(est_sigma, sigma, atol=5e-2)

    # Checking recomputation
    func_args = [k, theta, shape, seed]
    recomputation_test(rng=None,
                       func=F.rand_gamma,
                       vinputs=[],
                       func_args=func_args,
                       func_kwargs={},
                       ctx=ctx)
Пример #5
0
def test_rand_binomial_forward(seed, ctx, func_name, n, p, shape):
    with nn.context_scope(ctx):
        o = F.rand_binomial(n, p, shape, seed=seed)
    assert o.shape == tuple(shape)
    assert o.parent.name == func_name
    o.forward()
    if o.size >= 10000:
        est_mu = o.d.mean()
        est_sigma = o.d.std()
    else:
        data = []
        for i in range(10000):
            o.forward()
            data += [o.d.copy()]
        est_mu = np.mean(np.array(data))
        est_sigma = np.std(np.array(data))

    mu = n * p  # theoretical mean
    sigma = np.sqrt(n * p * (1 - p))  # theoretical std

    assert np.isclose(est_mu, mu, atol=5e-2)
    assert np.isclose(est_sigma, sigma, atol=5e-2)

    # Checking recomputation
    func_args = [n, p, shape, seed]
    recomputation_test(rng=None,
                       func=F.rand_binomial,
                       vinputs=[],
                       func_args=func_args,
                       func_kwargs={},
                       ctx=ctx)
Пример #6
0
def test_inq_affine_recomputation(seed, base_axis, weight_shape, num_bits,
                                  bias, inq_iterations, selection_algorithm,
                                  func_seed, ctx, func_name):
    from nbla_test_utils import recomputation_test
    rng = np.random.RandomState(seed)
    # Input
    inputs = [rng.randn(2, 3, 4).astype(np.float32)]
    # Weights
    inputs += [rng.randn(*weight_shape).astype(np.float32)]
    # Indices
    inputs += [np.random.randint(2, size=weight_shape)]
    # Bias
    if bias:
        inputs += [rng.randn(*weight_shape[1:]).astype(np.float32)]
    else:
        inputs += [None]

    func_args = [
        base_axis, num_bits, inq_iterations, selection_algorithm, func_seed
    ]

    vinputs = []
    for i in inputs:
        if i is None:
            vinputs.append(None)
        else:
            vinputs.append(nn.Variable.from_numpy_array(i))

    recomputation_test(rng=rng,
                       func=F.inq_affine,
                       vinputs=vinputs,
                       func_args=func_args,
                       func_kwargs={},
                       ctx=ctx)
Пример #7
0
def test_random_shift_recomputation(seed, inshape, shifts, border_mode, constant_value, func_seed, base_axis, ctx, func_name):
    from nbla_test_utils import recomputation_test
    rng = np.random.RandomState(seed)
    vinputs = [nn.Variable(inshape)]

    func_args = [shifts, border_mode, constant_value, base_axis, func_seed]
    recomputation_test(rng=rng, func=F.random_shift, vinputs=vinputs,
                       func_args=func_args, func_kwargs={}, ctx=ctx)
Пример #8
0
def test_assign_recomputation(seed, ctx, func_name):
    rng = np.random.RandomState(seed)
    dst = nn.Variable((2, 3, 4))
    src = nn.Variable((2, 3, 4))

    recomputation_test(rng=rng,
                       func=F.assign,
                       vinputs=[dst, src],
                       func_args=[],
                       func_kwargs={},
                       ctx=ctx)
Пример #9
0
def test_dropout_recompute(p, seed, ctx, func_name):
    from nbla_test_utils import recomputation_test

    rng = np.random.RandomState(0)
    x = nn.Variable((2, 3, 4))
    func_args = [p, seed]
    recomputation_test(rng=rng,
                       func=F.dropout,
                       vinputs=[x],
                       func_args=func_args,
                       func_kwargs={},
                       ctx=ctx)
Пример #10
0
def test_random_crop_recomputation(seed, inshape, shape, base_axis, ctx,
                                   func_name):
    from nbla_test_utils import recomputation_test
    rng = np.random.RandomState(0)
    vinputs = [nn.Variable(inshape)]
    func_args = [shape, base_axis, seed]
    recomputation_test(rng=rng,
                       func=F.random_crop,
                       vinputs=vinputs,
                       func_args=func_args,
                       func_kwargs={},
                       ctx=ctx)
Пример #11
0
def test_random_flip_recomputation(seed, axes, func_seed, base_axis, ctx,
                                   func_name):
    from nbla_test_utils import recomputation_test

    rng = np.random.RandomState(seed)
    vinputs = [nn.Variable((5, 4, 3))]

    func_args = [axes, base_axis, func_seed]
    recomputation_test(rng=rng,
                       func=F.random_flip,
                       vinputs=vinputs,
                       func_args=func_args,
                       func_kwargs={},
                       ctx=ctx)
Пример #12
0
def test_randint_forward(seed, ctx, func_name, low, high, shape):
    with nn.context_scope(ctx):
        o = F.randint(low, high, shape, seed=seed)
    assert o.shape == tuple(shape)
    assert o.parent.name == func_name
    o.forward()
    # NOTE: The following should be < high,
    # but use <= high because std::uniform_random contains a bug.
    assert np.all(o.d <= high)
    assert np.all(o.d >= low)

    # Checking recomputation
    func_args = [low, high, shape, seed]
    recomputation_test(rng=None,
                       func=F.randint,
                       vinputs=[],
                       func_args=func_args,
                       func_kwargs={},
                       ctx=ctx)
Пример #13
0
def test_image_augmentation_forward(seed, shape, ctx, func_name):
    rng = np.random.RandomState(seed)
    inputs = [rng.randn(16, 3, 8, 8).astype(np.float32)]
    i = nn.Variable(inputs[0].shape)
    # NNabla forward
    with nn.context_scope(ctx), nn.auto_forward():
        o = F.image_augmentation(i)
    assert o.d.shape == inputs[0].shape

    func_kargs = {
        'shape': shape,
        'pad': (2, 2),
        'min_scale': 0.8,
        'max_scale': 1.2,
        'angle': 0.2,
        'aspect_ratio': 1.1,
        'distortion': 0.1,
        'flip_lr': True,
        'flip_ud': False,
        'brightness': 0.1,
        'brightness_each': True,
        'contrast': 1.1,
        'contrast_center': 0.5,
        'contrast_each': True,
        'noise': 0.1,
        'seed': 0}

    with nn.context_scope(ctx), nn.auto_forward():
        o = F.image_augmentation(i, **func_kargs)
    assert o.d.shape == (inputs[0].shape[0],) + shape

    # Checking recomputation
    from nbla_test_utils import recomputation_test

    recomputation_test(rng=rng, func=F.image_augmentation, vinputs=[i],
                       func_args=[], func_kwargs=func_kargs, ctx=ctx)

    func_kargs['seed'] = -1
    recomputation_test(rng=rng, func=F.image_augmentation, vinputs=[i],
                       func_args=[], func_kwargs=func_kargs, ctx=ctx)