# Faz o acumulado da estação r = 31 * len(ntrimetres[i]) data_all_aux = np.nansum(np.swapaxes(data_all_aux, 1, 2) \ .reshape(r, 20, nlat, nlon), axis=0) print(data_all_aux.shape) data_all = np.full((20, nlat, nlon), np.nan) for memb in range(20): data_all[memb, ...], lons = shiftgrid(180., data_all_aux[memb, ...], lons_aux, start=False) # pm.plotmap(data_all[0, 23:33, 45:54], lats[23:33], lons[45:54]) # print(data_all[0, 23:33, 45:54].shape) # raw_input() y_season[a, :] = data_all[0, 23:33, 45:54] y_season = np.swapaxes(y_season, 0, 1) # Usado no hindcast fname = 'pcp-seasonacc-rsm97-2016-{0}-{1}.nc' \ .format(fcst_month, tri.upper()) writenc4(y_season, lats[23:33], lons[45:54], fname, itime, fcst_month, 11, 1981, 10, 9) fname = 'pcp-seasonacc-rsm97-2016-{0}-{1}' \ .format(fcst_month, tri.upper()) np.save(fname, y_season)
# ano, membro, lat, lon y_season = np.full((itime, 20, 72, 109), np.nan) for a, y in enumerate(ltime): data_all, seaccum, monaccum, seamean, monmean, \ lats, lons = post.PostModel(fcst_month, ntrimetres[i], y, model='RSM97') # Faz o acumulado da estação r = 31 * len(ntrimetres[i]) data_all = np.nansum(np.swapaxes(data_all, 1, 2) \ .reshape(r, 20, nlat, nlon), axis=0) # data_all = np.full((20, nlat, nlon), np.nan) print(data_all.shape) y_season[a, :] = data_all y_season = np.swapaxes(y_season, 0, 1) # Usado no hindcast fname = 'pcp-seasonacc-rsm97-2016-{0}-{1}.nc' \ .format(fcst_month, tri.upper()) writenc4(y_season, lats, lons, fname, itime, fcst_month, 11, 2016, nlat, nlon) fname = 'pcp-seasonacc-rsm97-2016-{0}-{1}' \ .format(fcst_month, tri.upper()) np.save(fname, y_season)