def build_graph(self, batch): self.reset() # Build Computation Graph according to length bsize, length = batch.data.shape if self.num_neg_sample == -1: negSampleIdx = range(self.dict_size) else: negSampleIdx = np.array([ np.random.randint(low=0, high=self.dict_size) for i in range(self.num_neg_sample) ]) self.neg_sample.value = np.int32(negSampleIdx) self.h0.value = np.zeros([bsize, self.hidden_dim]) self.c0.value = np.zeros([bsize, self.hidden_dim]) h = self.h0 c = self.c0 outputs = [] for idx in range(length - 1): in_i = self.input() in_i.value = batch.data[:, idx] # Get value from batch x = Embed(in_i, self.embed) h, c = self.lstm_cell(x, h, c) outputs.append(h) self.output( HingeLossOutput(Collect(outputs), self.sample_embed, self.neg_sample)) self.expect(batch.data[:, 1:])
def build(self, batch): # clear nodes above watermark del self.nodes[self.watermark:] # Remove retained inputs del self.inputs[2:] data = batch.data B = data.shape[0] T = data.shape[1] hidden_dim = self.hidden_dim self.h0.value = np.zeros((B, hidden_dim)) self.c0.value = np.zeros((B, hidden_dim)) collect = [] h = self.h0 c = self.c0 for t in range(T - 1): x = self.input() x.value = data[:, t] wordvec = Embed(x, self.C2V) cell = LSTMCell(self.wf, self.bf, self.wi, self.bi, self.wc, self.bc, self.wo, self.bo, wordvec, h, c) collect.append(SoftMax(Dot(cell.hout, self.V))) h = cell.hout c = cell.cout self.output(Collect(collect)) self.expect(data[:, 1:T].T)
def build_graph(batch): data = batch.data[0] fwd_graph.reset() bcwd_graph.reset() bsize, length = data.shape fwd_graph.h0.value = np.zeros([bsize, hidden_dim]) fwd_graph.c0.value = np.zeros([bsize, hidden_dim]) bcwd_graph.h0.value = np.zeros([bsize, hidden_dim]) bcwd_graph.c0.value = np.zeros([bsize, hidden_dim]) fwd_h = fwd_graph.h0 fwd_c = fwd_graph.c0 bcwd_h = bcwd_graph.h0 bcwd_c = bcwd_graph.c0 fwd_outputs = [] bcwd_outputs = [] for idx in range(length - 1): # Build Fowward Graph fwd_in_i = fwd_graph.input() fwd_in_i.value = data[:, idx] # Get value from batch fwd_x = Embed(fwd_in_i, fwd_graph.embed) fwd_h, fwd_c = fwd_graph.lstm_cell(fwd_x, fwd_h, fwd_c) fwd_out_i = SoftMax(Dot(fwd_h, fwd_graph.v2c)) fwd_outputs.append(fwd_out_i) # Build Backward Graph bcwd_in_i = bcwd_graph.input() bcwd_in_i.value = data[:, length - 1 - idx] # Get value from batch bcwd_x = Embed(bcwd_in_i, bcwd_graph.embed) bcwd_h, bcwd_c = bcwd_graph.lstm_cell(bcwd_x, bcwd_h, bcwd_c) bcwd_out_i = SoftMax(Dot(bcwd_h, bcwd_graph.v2c)) bcwd_outputs.append(bcwd_out_i) fwd_graph.output(Collect(fwd_outputs)) fwd_graph.expect(data[:, 1:]) bcwd_graph.output(Collect(bcwd_outputs)) bcwd_graph.expect(np.flip(data, axis=1)[:, 1:])
def build_graph(self, batch): enc_data = batch.data self.reset() bsize, enc_length = enc_data.shape outputs = [] # Build Fwd Encode Graph self.feh0.value = np.zeros([bsize, self.half_dim]) self.fec0.value = np.zeros([bsize, self.half_dim]) fh = self.feh0 fc = self.fec0 for idx in range(enc_length): in_i = self.input() in_i.value = enc_data[:, idx] # Get value from batch x = Embed(in_i, self.feembed) fh, fc = self.fenc_lstm_cell(x, fh, fc) # Build Bwd Encode Graph self.beh0.value = np.zeros([bsize, self.half_dim]) self.bec0.value = np.zeros([bsize, self.half_dim]) bh = self.beh0 bc = self.bec0 for idx in range(enc_length): in_i = self.input() in_i.value = enc_data[:, enc_length - 1 - idx] # Get value from batch x = Embed(in_i, self.beembed) bh, bc = self.benc_lstm_cell(x, bh, bc) # Build Decode Graph h = Concat(fh, bh) c = Concat(fc, bc) self.encoded_h = h self.encoded_c = c # Build Decode Graph decode_in = self.input() decode_in.value = np.zeros([bsize]) decode_embed = Embed(decode_in, self.dembed) x = decode_embed for idx in range(self.predict_len): h, c = self.dec_lstm_cell(x, h, c) out_i = ArgMax(SoftMax(Dot(h, self.dv2c))) outputs.append(out_i) x = Embed(out_i, self.dembed) self.output(Collect(outputs)) self.expect(np.zeros([bsize, self.predict_len]))
def build_graph(self, batch): enc_data = batch.data[0] dec_data = batch.data[1] self.reset() bsize, enc_length = enc_data.shape dec_length = dec_data.shape[1] outputs = [] # Build Fwd Encode Graph self.feh0.value = np.zeros([bsize, self.half_dim]) self.fec0.value = np.zeros([bsize, self.half_dim]) fh = self.feh0 fc = self.fec0 for idx in range(enc_length): in_i = self.input() in_i.value = enc_data[:, idx] # Get value from batch x = Embed(in_i, self.feembed) fh, fc = self.fenc_lstm_cell(x, fh, fc) # Build Bwd Encode Graph self.beh0.value = np.zeros([bsize, self.half_dim]) self.bec0.value = np.zeros([bsize, self.half_dim]) bh = self.beh0 bc = self.bec0 for idx in range(enc_length): in_i = self.input() in_i.value = enc_data[:, enc_length - 1 - idx] # Get value from batch x = Embed(in_i, self.beembed) bh, bc = self.benc_lstm_cell(x, bh, bc) # Build Decode Graph h = Concat(fh, bh) c = Concat(fc, bc) self.encoded_h = h self.encoded_c = c for idx in range(dec_length - 1): in_i = self.input() in_i.value = dec_data[:, idx] x = Embed(in_i, self.dembed) h, c = self.dec_lstm_cell(x, h, c) out_i = SoftMax(Dot(h, self.dv2c)) outputs.append(out_i) self.output(Collect(outputs)) self.expect(dec_data[:, 1:])
def build_graph(self, batch): data = batch.data[1] self.reset() # Build Computation Graph according to length bsize, length = data.shape h, c = self.bow_encode(batch.data[0]) outputs = [] for idx in range(length - 1): in_i = self.input() in_i.value = data[:, idx] # Get value from batch x = Embed(in_i, self.embed) h, c = self.lstm_cell(x, h, c) out_i = SoftMax(Dot(h, self.v2c)) outputs.append(out_i) self.output(Collect(outputs)) self.expect(data[:, 1:])
def build_graph(self, batch): self.reset() # Build Computation Graph according to length bsize, length = batch.data.shape self.h0.value = np.zeros([bsize, self.hidden_dim]) self.c0.value = np.zeros([bsize, self.hidden_dim]) h = self.h0 c = self.c0 outputs = [] for idx in range(length - 1): in_i = self.input() in_i.value = batch.data[:, idx] # Get value from batch x = Embed(in_i, self.embed) h, c = self.lstm_cell(x, h, c) out_i = SoftMax(Dot(h, self.v2c)) outputs.append(out_i) self.output(Collect(outputs)) self.expect(batch.data[:, 1:])
def build_graph(batch): data = batch.data[1] decode_graph.reset() # Build Computation Graph according to length bsize, length = data.shape ''' Change the function here to switch between encoders ''' h, c = lstm_encode(batch.data[0]) outputs = [] for idx in range(length - 1): in_i = decode_graph.input() in_i.value = data[:, idx] # Get value from batch x = Embed(in_i, decode_graph.embed) h, c = decode_graph.lstm_cell(x, h, c) out_i = SoftMax(Dot(h, decode_graph.v2c)) outputs.append(out_i) decode_graph.output(Collect(outputs)) decode_graph.expect(data[:, 1:])
def build_graph(batch): data = batch.data[0] graph.reset() # Build Computation Graph according to length bsize, length = data.shape graph.h0.value = np.zeros([bsize, hidden_dim]) graph.c0.value = np.zeros([bsize, hidden_dim]) h = graph.h0 c = graph.c0 outputs = [] for idx in range(length - 1): in_i = graph.input() in_i.value = data[:, idx] # Get value from batch x = Embed(in_i, graph.embed) h, c = graph.lstm_cell(x, h, c) out_i = SoftMax(Dot(h, graph.v2c)) outputs.append(out_i) graph.output(Collect(outputs)) graph.expect(data[:, 1:])
def build_graph(self, batch): enc_data = batch.data self.reset() bsize, enc_length = enc_data.shape outputs = [] # Build Encode Graph self.h0.value = np.zeros([bsize, self.hidden_dim]) self.c0.value = np.zeros([bsize, self.hidden_dim]) h = self.h0 c = self.c0 for idx in range(enc_length): in_i = self.input() in_i.value = enc_data[:, idx] # Get value from batch x = Embed(in_i, self.eembed) h, c = self.enc_lstm_cell(x, h, c) # out_i = SoftMax(Dot(h, graph.ev2c)) # outputs.append(out_i) self.encoded_h = h self.encoded_c = c # Build Decode Graph decode_in = self.input() decode_in.value = np.zeros([bsize]) decode_embed = Embed(decode_in, self.dembed) x = decode_embed for idx in range(self.predict_len): h, c = self.dec_lstm_cell(x, h, c) out_i = ArgMax(SoftMax(Dot(h, self.dv2c))) outputs.append(out_i) x = Embed(out_i, self.dembed) self.output(Collect(outputs)) self.expect(np.zeros([bsize, self.predict_len]))
def build_graph(self, batch): enc_data = batch.data[0] dec_data = batch.data[1] self.reset() bsize, enc_length = enc_data.shape dec_length = dec_data.shape[1] outputs = [] # Build Encode Graph self.h0.value = np.zeros([bsize, self.hidden_dim]) self.c0.value = np.zeros([bsize, self.hidden_dim]) h = self.h0 c = self.c0 for idx in range(enc_length): in_i = self.input() in_i.value = enc_data[:, idx] # Get value from batch x = Embed(in_i, self.eembed) h, c = self.enc_lstm_cell(x, h, c) # out_i = SoftMax(Dot(h, graph.ev2c)) # outputs.append(out_i) self.encoded_h = h self.encoded_c = c # Build Decode Graph for idx in range(dec_length - 1): in_i = self.input() in_i.value = dec_data[:, idx] x = Embed(in_i, self.dembed) h, c = self.dec_lstm_cell(x, h, c) out_i = SoftMax(Dot(h, self.dv2c)) outputs.append(out_i) self.output(Collect(outputs)) self.expect(dec_data[:, 1:])
def build_graph(self, batch): enc_data = batch.data dec_data = batch.expect self.reset() bsize = 1 enc_length = enc_data.shape[1] dec_length = dec_data.shape[0] outputs = [] hcollect = [] ccollect = [] self.feh0.value = np.zeros([bsize, self.half_dim]) self.fec0.value = np.zeros([bsize, self.half_dim]) self.beh0.value = np.zeros([bsize, self.half_dim]) self.bec0.value = np.zeros([bsize, self.half_dim]) for line_idx in range(self.num_line): # Build Fwd Encode Graph fh = self.feh0 fc = self.fec0 for idx in range(enc_length): in_i = self.input() in_i.value = enc_data[line_idx, idx].reshape(1) # Get value from batch x = Embed(in_i, self.feembed) fh, fc = self.fenc_lstm_cell(x, fh, fc) # Build Bwd Encode Graph bh = self.beh0 bc = self.bec0 for idx in range(enc_length): in_i = self.input() in_i.value = enc_data[line_idx, enc_length - 1 - idx].reshape( 1) # Get value from batch x = Embed(in_i, self.beembed) bh, bc = self.benc_lstm_cell(x, bh, bc) h = Concat(fh, bh) c = Concat(fc, bc) hcollect.append(h) ccollect.append(c) # Build Decode Graph h = Average(Collect(hcollect)) c = Average(Collect(ccollect)) self.encoded_h = h self.encoded_c = c for idx in range(dec_length - 1): in_i = self.input() in_i.value = dec_data[idx].reshape(1) x = Embed(in_i, self.dembed) h, c = self.dec_lstm_cell(x, h, c) out_i = SoftMax(Dot(h, self.dv2c)) outputs.append(out_i) self.output(Collect(outputs)) self.expect(dec_data[1:])
def build_graph(self, batch): enc_data = batch.data self.reset() bsize, enc_length = enc_data.shape outputs = [] fwd_encode_result = [None] * enc_length bwd_encode_result = [None] * enc_length # Build Fwd Encode Graph self.feh0.value = np.zeros([bsize, self.half_dim]) self.fec0.value = np.zeros([bsize, self.half_dim]) fh = self.feh0 fc = self.fec0 for idx in range(enc_length): in_i = self.input() in_i.value = enc_data[:, idx] # Get value from batch x = Embed(in_i, self.feembed) fh, fc = self.fenc_lstm_cell(x, fh, fc) fwd_encode_result[idx] = fh # Build Bwd Encode Graph self.beh0.value = np.zeros([bsize, self.half_dim]) self.bec0.value = np.zeros([bsize, self.half_dim]) bh = self.beh0 bc = self.bec0 for idx in range(enc_length): in_i = self.input() in_i.value = enc_data[:, enc_length - 1 - idx] # Get value from batch x = Embed(in_i, self.beembed) bh, bc = self.benc_lstm_cell(x, bh, bc) bwd_encode_result[enc_length - 1 - idx] = bh # Build Decode Graph h = Concat(fh, bh) # c = Concat(fc, bc) self.encoded_h = h # self.encoded_c = c encode_result = [] for idx in range(enc_length): encode_result.append( Concat(fwd_encode_result[idx], bwd_encode_result[idx])) encode_state = Collect(encode_result) init = self.input() init.value = np.zeros([bsize]) x = Embed(init, self.dembed) for idx in range(self.predict_len): c = Attention(encode_state, h) h, c = self.dec_lstm_cell(x, h, c) out_i = ArgMax(SoftMax(Dot(h, self.dv2c))) outputs.append(out_i) x = Embed(out_i, self.dembed) self.output(Collect(outputs)) self.expect(np.zeros([bsize, self.predict_len]))