Пример #1
0
def show(title, a, b, c, d):
    n = Neuron(0.0, a, b, c, d)
    spike_train = []
    for i in range(1000):
        n.current = 0.0 if i < 100 or i > 800 else 10.0
        spike_train.append((1.0 * i, n.current, n.v, n.u))
        print('{0:d}\t{1:f}\t{2:f}\t{3:f}'.format(i, n.current, n.v, n.u))
        n.advance()

    visualize.plot_spikes(spike_train, view=False, title=title)
Пример #2
0
def show(title, a, b, c, d):
    n = Neuron(0.0, a, b, c, d)
    spike_train = []
    for i in range(1000):
        n.current = 0.0 if i < 100 or i > 800 else 10.0
        spike_train.append((1.0 * i, n.current, n.v, n.u))
        print('{0:d}\t{1:f}\t{2:f}\t{3:f}'.format(i, n.current, n.v, n.u))
        n.advance()

    plot_spikes(spike_train, view=False, title=title)
Пример #3
0
def show(title, a, b, c, d):
    n = Neuron(0.0, a, b, c, d)
    spike_train = []
    for i in range(1000):
        n.current = 0.0 if i < 100 or i > 800 else 10.0
        spike_train.append((1.0 * i, n.current, n.v, n.u))
        print('%d\t%f\t%f\t%f' % (i, n.current, n.v, n.u))
        n.advance()

    visualize.plot_spikes(spike_train, view=True, title=title)
Пример #4
0
def test_network():
    neurons = {0: Neuron(0, 0.02, 0.2, -65.0, 8.0),
               1: Neuron(0, 0.02, 0.2, -65.0, 8.0),
               2: Neuron(0, 0.02, 0.2, -65.0, 8.0)}
    inputs = [0, 1]
    outputs = [2]
    connections = [(0, 2, 0.123), (1, 2, 0.234)]

    net = IzNetwork(neurons, inputs, outputs, connections)
    net.set_inputs([1.0, 0.0])
    net.advance()
    net.advance()
Пример #5
0
def test_basic():
    n = Neuron(10, 0.02, 0.2, -65.0, 8.0)
    spike_train = []
    for i in range(1000):
        spike_train.append(n.v)
        n.advance()
Пример #6
0
def test_basic():
    n = Neuron(10)
    spike_train = []
    for i in range(1000):
        spike_train.append(n.potential)
        n.advance()