Пример #1
0
def report():
    print "\nNumber of runs: %s\n" % sys.argv[2]
    print "\t Gen. \t Nodes \t Conn. \t Evals. \t Score \n"
    print "average  %3.2f \t %2.2f \t %2.2f \t %2.2f \t %2.2f" \
          % (mean(total_gens), mean(total_nodes), mean(total_conns), mean(total_evals), mean(total_score))
    print "stdev    %3.2f \t %2.2f \t %2.2f \t %2.2f \t %2.2f" \
          % (stdev(total_gens), stdev(total_nodes), stdev(total_conns), stdev(total_evals), stdev(total_score))
Пример #2
0
 def post_evaluate(self, config, population, species, best_genome):
     sparse_mean, sparse_dev = self.compute_sparseness(population)
     fitnesses = [c.fitness for c in itervalues(population)]
     fit_mean = mean(fitnesses)
     fit_std = stdev(fitnesses)
     distances = [c.dist for c in itervalues(population)]
     dist_mean = mean(distances)
     dist_std = stdev(distances)
     best_species_id = species.get_species_id(best_genome.key)
     with open(self.filename, "a+") as f:
         print('Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'.
               format(fit_mean, fit_std))
         f.write(
             'Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}\n'.
             format(fit_mean, fit_std))
         print('Population\'s diversity: {0:3.5f} stdev: {1:3.5f}'.format(
             dist_mean, dist_std))
         f.write(
             'Population\'s diversity: {0:3.5f} stdev: {1:3.5f}\n'.format(
                 dist_mean, dist_std))
         print('Population\'s sparseness: {0:3.5f} stdev: {1:3.5f}'.format(
             sparse_mean, sparse_dev))
         f.write(
             'Population\'s sparseness: {0:3.5f} stdev: {1:3.5f}\n'.format(
                 sparse_mean, sparse_dev))
         print('Best fitness: {}'.format(best_genome.fitness))
         print(
             'Best distance: {0:3.5f}\nSize: {1!r} - species {2} - id {3}'.
             format(best_genome.dist, best_genome.size(), best_species_id,
                    best_genome.key))
         f.write('Best fitness: {}\n'.format(best_genome.fitness))
         f.write(
             'Best distance: {0:3.5f}\nSize: {1!r} - species {2} - id {3}\n'
             .format(best_genome.dist, best_genome.size(), best_species_id,
                     best_genome.key))
Пример #3
0
def report():
    print "\nNumber of runs: {0!s}\n".format(sys.argv[2])
    print "\t Gen. \t Nodes \t Conn. \t Evals. \t Score \n"
    print "average  {0:3.2f} \t {1:2.2f} \t {2:2.2f} \t {3:2.2f} \t {4:2.2f}".format(
        mean(total_gens), mean(total_nodes), mean(total_conns),
        mean(total_evals), mean(total_score))
    print "stdev    {0:3.2f} \t {1:2.2f} \t {2:2.2f} \t {3:2.2f} \t {4:2.2f}".format(
        stdev(total_gens), stdev(total_nodes), stdev(total_conns),
        stdev(total_evals), stdev(total_score))
    def compute_adjusted_fitness(all_fitnesses, remaining_species):
        min_fitness = min(all_fitnesses)
        max_fitness = max(all_fitnesses)

        fitness_range = max(1.0, max_fitness - min_fitness)
        for afs in remaining_species:
            msf = mean([m.fitness for m in itervalues(afs.members)])
            af = (msf - min_fitness) / fitness_range
            afs.adjusted_fitness = af

        adjusted_fitnesses = [s.adjusted_fitness for s in remaining_species]
        avg_adjusted_fitness = mean(adjusted_fitnesses)
        return adjusted_fitnesses, avg_adjusted_fitness
Пример #5
0
 def post_evaluate(self, config, population, species, best_genome):
     # pylint: disable=no-self-use
     fitnesses = [c.fitness for c in itervalues(population)]
     if type(fitnesses[0]) is float:
         fit_mean = mean(fitnesses)
         fit_std = stdev(fitnesses)
     elif type(fitnesses[0]) is FitnessObj:
         fit_mean = mean_vector(fitnesses)
         fit_std = std_vector(fitnesses)
     else:
         fit_mean = 0
         fit_std = 0
     best_species_id = species.get_species_id(best_genome.key)
     print('Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'.format(
         fit_mean, fit_std))
     print('Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}'.
           format(best_genome.fitness, best_genome.size(), best_species_id,
                  best_genome.key))
     with open(self.filename, "a+") as f:
         f.write(
             'Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}\n'.
             format(fit_mean, fit_std))
         f.write(
             'Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}\n'
             .format(best_genome.fitness, best_genome.size(),
                     best_species_id, best_genome.key))
Пример #6
0
    def post_evaluate(self, config, population, species, best_genome):
        # pylint: disable=no-self-use
        fitnesses = [c.fitness for c in itervalues(population)]
        fit_mean = mean(fitnesses)
        fit_std = stdev(fitnesses)
        best_species_id = species.get_species_id(best_genome.key)
        best = None
        with open("risultati\seed" + str(self.seed) + ".csv", 'a') as f:
            for key in population:
                if best is None:
                    best = population[key]

                if population[key].fitness > best.fitness:
                    best = population[key]

            f.write(
                str(fit_mean) + "," + str(fit_std) + "," + str(best.fitness))
            f.write("\n")

        with gzip.open("migliori_genomi\seed" + str(self.seed),
                       'a',
                       compresslevel=5) as f:
            pickle.dump(best, f, protocol=pickle.HIGHEST_PROTOCOL)
            #pickle.dump("\n;\n", f, protocol=pickle.HIGHEST_PROTOCOL)

        print('Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'.format(
            fit_mean, fit_std))
        print('Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}'.
              format(best_genome.fitness, best_genome.size(), best_species_id,
                     best_genome.key))
Пример #7
0
    def post_evaluate(self, config, population, species, best_genome):

        # Ordinary report if not novelty search
        if config.novelty is None:

            StdOutReporter.post_evaluate(
                    self,
                    config,
                    population,
                    species,
                    best_genome)

        # Special report for novelty search
        else:

            novelties = [c.fitness for c in population.values()]
            nov_mean = mean(novelties)
            nov_std = stdev(novelties)
            best_species_id = species.get_species_id(best_genome.key)
            print('Population\'s average novelty: %3.5f stdev: %3.5f' %
                  (nov_mean, nov_std))
            print('Best novelty: %3.5f - size: (%d,%d) - species %d - id %d' %
                  (best_genome.fitness,
                   best_genome.size()[0],
                   best_genome.size()[1],
                   best_species_id,
                   best_genome.key))
            print('Best actual fitness: %f ' % best_genome.actual_fitness)

        print('Evaluations this generation: %d' % config.current_evaluations)
 def post_evaluate(self, config, population, species, best_genome):
     # pylint: disable=no-self-use
     fitnesses = [c.fitness for c in itervalues(population)]
     fit_mean = mean(fitnesses)
     fit_std = stdev(fitnesses)
     best_species_id = species.get_species_id(best_genome.key)
     '''
Пример #9
0
    def get_species_fitness(self,
                            null_value: str = ''
                            ) -> List[List[Union[str, float]]]:
        """
        世代数だけの長さの配列を返す
        ret[x][sid] = x世代目における種sidに含まれる個体全体の平均適応度
        """
        # 世代全体で出現した種IDセット
        all_species: Set[int] = set()
        for gen_data in self.generation_statistics:
            all_species: Set[int] = all_species.union(gen_data.keys())

        max_species: int = max(all_species)

        # 各世代における各種の適応度の平均
        # species_fitness[x][sid] = x世代目における種sidに含まれる全個体の適応度の平均
        species_fitness: List[List[Union[str, float]]] = []
        for gen_data in self.generation_statistics:

            # ある世代における 各種に含まれる各個体の適応度
            member_fitness: List[Union[Dict[int, float], List]] = [
                gen_data.get(sid, []) for sid in range(1, max_species + 1)
            ]
            fitness: List[Union[str, float]] = []
            for mf in member_fitness:
                if mf:
                    fitness.append(mean(mf))
                else:
                    fitness.append(null_value)
            species_fitness.append(fitness)

        return species_fitness
Пример #10
0
 def post_evaluate(self, config, population, species, best_genome):
     # pylint: disable=no-self-use
     body = []
     fitnesses = [c.fitness for c in itervalues(population)]
     fit_mean = mean(fitnesses)
     fit_std = stdev(fitnesses)
     best_species_id = species.get_species_id(best_genome.key)
     with open('fitplot', 'a') as f:
         f.write('{},{},{}\n'.format(fit_mean, fit_std,
                                     best_genome.fitness))
     print('Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'.format(
         fit_mean, fit_std))
     print('Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}'.
           format(best_genome.fitness, best_genome.size(), best_species_id,
                  best_genome.key))
     body.append(
         'Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}\n'.format(
             fit_mean, fit_std))
     body.append(
         'Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}\n'.
         format(best_genome.fitness, best_genome.size(), best_species_id,
                best_genome.key))
     if body:
         img = plot_fitness_over_gen('fitplot', 'fitplot.png')
         report(body, img)
Пример #11
0
 def post_evaluate(self, config, population, species, best_genome):
     fitnesses = [c.fitness for c in itervalues(population)]
     fit_mean = mean(fitnesses)
     fit_std = stdev(fitnesses)
     best_species_id = species.get_species_id(best_genome.key)
     print('Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'.format(fit_mean, fit_std))
     print('Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}'.format(best_genome.fitness, best_genome.size(),
                                                                                best_species_id, best_genome.key))
Пример #12
0
def get_average_fitness(population):
    avg_fitness = []
    for stats in population.generation_statistics:
        scores = []
        for fitness in stats.values():
            scores.extend(fitness)
        avg_fitness.append(mean(scores))

    return avg_fitness
Пример #13
0
def get_average_fitness(population):
    avg_fitness = []
    for stats in population.generation_statistics:
        scores = []
        for fitness in stats.values():
            scores.extend(fitness)
        avg_fitness.append(mean(scores))

    return avg_fitness
Пример #14
0
 def post_evaluate(self, config, population, species, best_genome):
     if not self.ctr % self.freq:
         self.best.append(best_genome.modularity())
         modularities = [g.modularity() for g in itervalues(population)]
         self.means.append(mean(modularities))
         self.stddevs.append(stdev(modularities))
         print(
             "\n\nMODULARITY (MOST FIT): {:.4f}\nMEAN MODULARITY: {:.4f}\n\n"
             .format(self.best[-1], self.means[-1]))
     self.ctr += 1
Пример #15
0
    def get_average_cross_validation_fitness(self):
        """Get the per-generation average cross_validation fitness."""
        avg_cross_validation_fitness = []
        for stats in self.generation_cross_validation_statistics:
            scores = []
            for fitness in stats.values():
                scores.extend(fitness)
            avg_cross_validation_fitness.append(mean(scores))

        return avg_cross_validation_fitness
Пример #16
0
    def get_average_cross_validation_fitness(self):
        """Get the per-generation average cross_validation fitness."""
        avg_cross_validation_fitness = []
        for stats in self.generation_cross_validation_statistics:
            scores = []
            for fitness in stats.values():
                scores.extend(fitness)
            avg_cross_validation_fitness.append(mean(scores))

        return avg_cross_validation_fitness
Пример #17
0
 def post_evaluate(self, config, population, species, best_genome):
     # pylint: disable=no-self-use
     fitnesses = [c.fitness for c in itervalues(population)]
     fit_mean = mean(fitnesses)
     fit_std = stdev(fitnesses)
     best_species_id = species.get_species_id(best_genome.key)
     log.info('Population\'s average fitness: %f stdev: %f', fit_mean,
              fit_std)
     log.info('Best fitness: %f - size: %d - species %s - id %s',
              best_genome.fitness, best_genome.size(), best_species_id,
              best_genome.key)
Пример #18
0
 def post_evaluate(self, population, species, best):
     fit_mean = mean([c.fitness for c in population])
     fit_std = stdev([c.fitness for c in population])
     print('Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'.format(fit_mean, fit_std))
     print('Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}'.format(best.fitness, best.size(),
                                                                                best.species_id, best.ID))
     print('Species length: {0:d} totaling {1:d} individuals'.format(len(species), sum(
         [len(s.members) for s in species])))
     print('Species ID       : {0!s}'.format([s.ID for s in species]))
     print('Species size     : {0!s}'.format([len(s.members) for s in species]))
     print('Species age      : {0}'.format([s.age for s in species]))
Пример #19
0
 def post_evaluate(self, population, species, best):
     fit_mean = mean([c.fitness for c in population])
     fit_std = stdev([c.fitness for c in population])
     print('Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'.format(fit_mean, fit_std))
     print('Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}'.format(best.fitness, best.size(),
                                                                                best.species_id, best.ID))
     print('Species length: {0:d} totaling {1:d} individuals'.format(len(species), sum(
         [len(s.members) for s in species])))
     print('Species ID       : {0!s}'.format([s.ID for s in species]))
     print('Species size     : {0!s}'.format([len(s.members) for s in species]))
     print('Species age      : {0}'.format([s.age for s in species]))
Пример #20
0
 def post_evaluate(self, config, population, species, best_genome):
   fitnesses = [c.fitness for c in itervalues(population)]
   fit_mean = mean(fitnesses)
   species_ids = list(iterkeys(species.species))
   
   for i in species_ids:
     s = species.species[i]
     self.log(self.generation, i, s.fitness, fit_mean)
     best_genome = None
     for g in itervalues(s.members):
       if best_genome is None or (g.fitness > best_genome.fitness):
         best_genome = g
Пример #21
0
    def compute_adjusted_fitness(all_fitnesses, remaining_species):
        min_fitness = min(all_fitnesses)
        max_fitness = max(all_fitnesses)
        # Do not allow the fitness range to be zero, as we divide by it below.
        fitness_range = max(FitnessObj(0.1, 1), max_fitness - min_fitness)
        for afs in remaining_species:
            # Compute adjusted fitness.
            array = [m.fitness for m in itervalues(afs.members)]
            if type(array[0]) is FitnessObj:
                msf = mean_vector(array)
            else:
                msf = mean(array)
            af = (msf - min_fitness) / fitness_range
            afs.adjusted_fitness = af

        adjusted_fitnesses = [s.adjusted_fitness for s in remaining_species]
        if type(adjusted_fitnesses[0]) is FitnessObj:
            avg_adjusted_fitness = mean_vector(adjusted_fitnesses)
        else:
            avg_adjusted_fitness = mean(adjusted_fitnesses)
        return adjusted_fitnesses, avg_adjusted_fitness
Пример #22
0
    def post_evaluate(self, config, population, species, best_genome):
        print("Here")
        fitnesses = [c.fitness for c in itervalues(population)]
        self.mean_arr.append(mean(fitnesses))
        self.best_arr.append(best_genome.fitness)

        # Show the thing
        length_range = arange(len(self.mean_arr))
        plt.plot(length_range, self.mean_arr, 'r--', length_range,
                 self.best_arr, 'b')

        plt.pause(0.000001)
Пример #23
0
    def average_fitness(self):
        """ Returns the raw average fitness for this species """
        avg_fitness = mean([c.fitness for c in self.members])

        # Check for increase in mean fitness and adjust "no improvement" count as necessary.
        if avg_fitness > self.last_avg_fitness:
            self.last_avg_fitness = avg_fitness
            self.no_improvement_age = 0
        else:
            self.no_improvement_age += 1

        return avg_fitness
Пример #24
0
 def post_evaluate(self, config, population, species, best_genome):
     # pylint: disable=no-self-use
     fitnesses = [c.fitness for c in itervalues(population)]
     fit_mean = mean(fitnesses)
     fit_std = stdev(fitnesses)
     best_species_id = species.get_species_id(best_genome.key)
     outputString = '';
     outputString += ('Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'.format(fit_mean, fit_std)) + '\n'
     outputString += ('Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}'.format(best_genome.fitness,
                                                                              best_genome.size(),
                                                                              best_species_id,
                                                                              best_genome.key)) + '\n';
     self.output(outputString);
Пример #25
0
 def post_evaluate(self, config: Config, population: Dict[int,
                                                          DefaultGenome],
                   species_set: DefaultSpeciesSet,
                   best_genome: DefaultGenome) -> None:
     # pylint: disable=no-self-use
     fitnesses: List[float] = [c.fitness for c in population.values()]
     fit_mean: float = mean(fitnesses)
     fit_std: float = stdev(fitnesses)
     best_species_id: int = species_set.get_species_id(best_genome.key)
     print('Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'.format(
         fit_mean, fit_std))
     print('Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}'.
           format(best_genome.fitness, best_genome.size(), best_species_id,
                  best_genome.key))
Пример #26
0
def bench(num_runs):
    results = []
    while len(results) < num_runs:
        try:
            result = run()
        except population.CompleteExtinctionException:
            continue

        results.append(result)
        if len(results) % 10 == 0:
            print("Completed run %d of %d" % (len(results), num_runs))

    generations = [r[0] for r in results]
    hidden = [r[1] for r in results]
    connections = [r[2] for r in results]
    enabled = [r[3] for r in results]

    print("              mean (stdev)")
    print(" Generations: %.3f (%.3f)" %
          (mean(generations), stdev(generations)))
    print("hidden nodes: %.3f (%.3f)" % (mean(hidden), stdev(hidden)))
    print(" connections: %.3f (%.3f)" %
          (mean(connections), stdev(connections)))
    print("     enabled: %.3f (%.3f)" % (mean(enabled), stdev(enabled)))
Пример #27
0
    def post_evaluate(self, config, population, species, best_genome):

        fits = [c.actual_fitness for c in population.values()]

        # Save current generation info to history file
        fit_max = max(fits)
        self.csvfile.write('%d,%f,%+5.3f,%+5.3f,%+5.3f' %
                           (config.gen, time() - self.start, mean(fits),
                            stdev(fits), fit_max))

        if config.is_novelty():
            novs = [c.fitness for c in population.values()]
            self.csvfile.write(',%+5.3f,%+5.3f,%+5.3f' %
                               (mean(novs), stdev(novs), max(novs)))

        self.csvfile.write('\n')
        self.csvfile.flush()

        # Track best
        if self.checkpoint and fit_max > self.best_fitness:
            self.best_fitness = fit_max
            print('############# Saving new best %f ##############' %
                  self.best_fitness)
            config.save_genome(best_genome)
Пример #28
0
 def post_evaluate(self, config, population, species, best_genome):
     if config.novelty is None:
         StdOutReporter.post_evaluate(self, config, population, species,
                                      best_genome)
         return
     fitnesses = [c.fitness for c in population.values()]
     fit_mean = mean(fitnesses)
     fit_std = stdev(fitnesses)
     best_species_id = species.get_species_id(best_genome.key)
     print('Population\'s average novelty: {0:3.5f} stdev: {1:3.5f}'.format(
         fit_mean, fit_std))
     print('Best novelty: {0:3.5f} - size: {1!r} - species {2} - id {3}'.
           format(best_genome.fitness, best_genome.size(), best_species_id,
                  best_genome.key))
     print('Best actual fitness: %f ' % best_genome.actual_fitness)
 def post_evaluate(self, config, population, species, best_genome):
     # pylint: disable=no-self-use
     fitnesses = [c.fitness for c in itervalues(population)]
     fit_mean = mean(fitnesses)
     fit_std = stdev(fitnesses)
     best_species_id = species.get_species_id(best_genome.key)
     fd = open(self.filename, 'a')
     fd.write(
         'Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}\n'.format(
             fit_mean, fit_std))
     fd.write(
         'Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}\n'.
         format(best_genome.fitness, best_genome.size(), best_species_id,
                best_genome.key))
     fd.close()
Пример #30
0
 def post_evaluate(self, config, population, species, best_genome):
     # pylint: disable=no-self-use
     fitnesses = [c.fitness for c in itervalues(population)]
     fit_mean = mean(fitnesses)
     fit_std = stdev(fitnesses)
     best_species_id = species.get_species_id(best_genome.key)
     print('Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'.format(
         fit_mean, fit_std))
     print('Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}'.
           format(best_genome.fitness, best_genome.size(), best_species_id,
                  best_genome.key))
     # andrew add
     if (best_genome.fitness > self.bestFitness):
         res = open("result.txt", "a")
         res.write('\nBest genome:\n{!s}'.format(best_genome))
         res.close()
Пример #31
0
    def post_evaluate(self, config, population, species, best_genome,
                      score_max, score_mean):
        # pylint: disable=no-self-use
        fitnesses = [c.fitness for c in population.values()]
        fit_mean = mean(fitnesses)
        fit_std = stdev(fitnesses)

        score_max.append(max(fitnesses))
        score_mean.append(fit_mean)

        best_species_id = species.get_species_id(best_genome.key)
        print('Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'.format(
            fit_mean, fit_std))
        print('Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}'.
              format(best_genome.fitness, best_genome.size(), best_species_id,
                     best_genome.key))
Пример #32
0
 def post_evaluate(self, config, population, species, best_genome):
     # pylint: disable=no-self-use
     fitnesses = [c.fitness for c in itervalues(population)]
     fit_mean = mean(fitnesses)
     fit_std = stdev(fitnesses)
     best_species_id = species.get_species_id(best_genome.key)
     self.stream(
         'Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'.format(
             fit_mean, fit_std))
     self.stream(
         'Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}'.
         format(best_genome.fitness, best_genome.size(), best_species_id,
                best_genome.key))
     msk = "[" + ", ".join(
         [f"{x:,.0f}"
          for x in best_genome.metascorekeeper.score_listing()]) + "]"
     self.stream(f"Metascorekeeper summary: {msk}")
Пример #33
0
 def post_evaluate(self, config, population, species, best_genome):
     # pylint: disable=no-self-use
     fitnesses = [c.fitness for c in itervalues(population)]
     fit_mean = mean(fitnesses)
     fit_std = stdev(fitnesses)
     best_species_id = species.get_species_id(best_genome.key)
     self._logger.info(
         'Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'.format(
             fit_mean, fit_std))
     self._logger.info(
         'Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}'.
         format(best_genome.fitness, best_genome.size(), best_species_id,
                best_genome.key))
     self._mlflow.log_metric(key="best_fitness", value=best_genome.fitness)
     self._mlflow.log_metric(key="best_fitness_species",
                             value=best_species_id)
     self._mlflow.log_metric(key="best_fitness_id", value=best_genome.key)
Пример #34
0
def get_species_fitness(population, null_value=''):
    all_species = set()
    for gen_data in population.generation_statistics:
        all_species = all_species.union(gen_data.keys())

    max_species = max(all_species)
    species_fitness = []
    for gen_data in population.generation_statistics:
        member_fitness = [gen_data.get(sid, []) for sid in range(1, max_species + 1)]
        fitness = []
        for mf in member_fitness:
            if mf:
                fitness.append(mean(mf))
            else:
                fitness.append(null_value)
        species_fitness.append(fitness)

    return species_fitness
Пример #35
0
def plot_fitness(checkpoints, name):
    gens = [c.generation for c in checkpoints]
    bests = [c.best_genome.fitness for c in checkpoints]
    avgs = [mean([f.fitness for _, f in c.population.items()]) for c in checkpoints]

    fig, ax = plt.subplots(figsize = (10,5))
    ax.set_title(name+" - Fitness over Generations")
    ax.plot(gens, bests, color='blue', linewidth=1, label="Best")
    ax.plot(gens, avgs, color='black', linewidth=1, label="Average")
    ax.legend()

    ax.set_xlabel('Generation')
    ax.set_ylabel('Fitness (Flight Time)')

    plt.tight_layout()
    fig.savefig(name+'.png', format='png', dpi=300)
    plt.show()
    plt.close()
Пример #36
0
    def get_species_fitness(self, null_value=''):
        all_species = set()
        for gen_data in self.generation_statistics:
            all_species = all_species.union(gen_data.keys())

        max_species = max(all_species)
        species_fitness = []
        for gen_data in self.generation_statistics:
            member_fitness = [gen_data.get(sid, []) for sid in range(1, max_species + 1)]
            fitness = []
            for mf in member_fitness:
                if mf:
                    fitness.append(mean(mf))
                else:
                    fitness.append(null_value)
            species_fitness.append(fitness)

        return species_fitness
    def post_evaluate(self, population, species, best):
        fit_mean = mean([c.fitness for c in population])
        fit_std = stdev([c.fitness for c in population])
        print('Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'
              .format(fit_mean, fit_std))
        print('Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}'
              .format(best.fitness, best.size(), best.species_id, best.ID))
        print('Species length: {0:d} totaling {1:d} individuals'
              .format(len(species), sum([len(s.members) for s in species])))
        print('Species ID       : {0!s}'.format([s.ID for s in species]))
        print('Species size     : {0!s}'
              .format([len(s.members) for s in species]))
        print('Species age      : {0}'.format([s.age for s in species]))

        [cl.write_message(('\n     Fitness promedio de la poblacion: {0:3.5f}'
                           + ' Desviacion: {1:3.5f}')
                          .format(fit_mean, fit_std)) for cl in clientes]

        [cl.write_message(
         '\n     Mejor fitness: {0:3.5f} - size: {1!r} - Especie {2} - ID {3}\n'
         .format(best.fitness, best.size(),
                 best.species_id, best.ID)) for cl in clientes]
Пример #38
0
 def get_average_fitness(self):
     """ Returns the average fitness over all members in the species."""
     return mean([c.fitness for c in self.members])
Пример #39
0
def species_mean_fitness(species):
    return mean([m.fitness for m in species.members])
Пример #40
0
    def epoch(self, fitness_function, n, report=True, save_best=False, checkpoint_interval=10,
              checkpoint_generation=None):
        """ Runs NEAT's genetic algorithm for n epochs.

            Keyword arguments:
            report -- show stats at each epoch (default True)
            save_best -- save the best genome from each epoch (default False)
            checkpoint_interval -- time in minutes between saving checkpoints (default 10 minutes)
            checkpoint_generation -- time in generations between saving checkpoints
                (default None -- option disabled)
        """
        t0 = time.time()  # for saving checkpoints

        for g in range(n):
            self.generation += 1

            if report:
                print('\n ****** Running generation %d ****** \n' % self.generation)

            # Evaluate individuals
            fitness_function(self.population)
            # Speciates the population
            self.__speciate(report)

            # Current generation's best genome
            self.most_fit_genomes.append(max(self.population))
            # Current population's average fitness
            self.avg_fitness_scores.append(mean([c.fitness for c in self.population]))

            # Print some statistics
            best = self.most_fit_genomes[-1]

            # saves the best genome from the current generation
            if save_best:
                f = open('best_genome_' + str(self.generation), 'w')
                pickle.dump(best, f)
                f.close()

            # Stops the simulation
            if best.fitness > self.config.max_fitness_threshold:
                if report:
                    print('\nBest individual in epoch %s meets fitness threshold - complexity: %s' % (
                        self.generation, best.size()))
                break

            # Remove stagnated species and its members (except if it has the best genome)
            for s in self.__species[:]:
                if s.no_improvement_age > self.config.max_stagnation:
                    if report:
                        print("\n   Species %2d (with %2d individuals) is stagnated: removing it" \
                              % (s.ID, len(s.members)))
                    # removing species
                    self.__species.remove(s)
                    # removing all the species' members
                    # TODO: can be optimized!
                    for c in self.population[:]:
                        if c.species_id == s.ID:
                            self.population.remove(c)

            # Compute spawn levels for each remaining species
            self.diversity.compute_spawn_amount(self.__species)

            # Removing species with spawn amount = 0
            for s in self.__species[:]:
                # This rarely happens
                if s.spawn_amount == 0:
                    if report:
                        print('   Species %2d age %2s removed: produced no offspring' % (s.ID, s.age))
                    for c in self.population[:]:
                        if c.species_id == s.ID:
                            self.population.remove(c)
                            # self.remove(c)
                    self.__species.remove(s)

            # Logging speciation stats
            self.__log_species()

            if report:
                if self.population:
                    std_dev = stdev([c.fitness for c in self.population])
                    print('Population\'s average fitness: %3.5f stdev: %3.5f' % (self.avg_fitness_scores[-1], std_dev))
                    print('Best fitness: %2.12s - size: %s - species %s - id %s' \
                          % (best.fitness, best.size(), best.species_id, best.ID))
                    print('Species length: %d totaling %d individuals' \
                          % (len(self.__species), sum([len(s.members) for s in self.__species])))
                    print('Species ID       : %s' % [s.ID for s in self.__species])
                    print('Each species size: %s' % [len(s.members) for s in self.__species])
                    print('Amount to spawn  : %s' % [s.spawn_amount for s in self.__species])
                    print('Species age      : %s' % [s.age for s in self.__species])
                    print('Species no improv: %s' % [s.no_improvement_age for s in self.__species])
                else:
                    print('All species extinct.')

            # -------------------------- Producing new offspring -------------------------- #
            new_population = []  # next generation's population

            # If no species are left, create a new population from scratch, otherwise top off
            # population by reproducing existing species.
            if self.__species:
                for s in self.__species:
                    new_population.extend(s.reproduce(self.config))

                # Controls under or overflow  #
                fill = self.config.pop_size - len(new_population)
                if fill < 0:  # overflow
                    if report:
                        print('   Removing %d excess individual(s) from the new population' % -fill)
                    # TODO: This is dangerous! I can't remove a species' representative!
                    new_population = new_population[:fill]  # Removing the last added members

                if fill > 0:  # underflow
                    if report:
                        print('   Producing %d more individual(s) to fill up the new population' % fill)

                    # TODO: what about producing new individuals instead of reproducing?
                    # increasing diversity from time to time might help
                    while fill > 0:
                        # Selects a random genome from population
                        parent1 = random.choice(self.population)
                        # Search for a mate within the same species
                        found = False
                        for c in self.population:
                            # what if c is parent1 itself?
                            if c.species_id == parent1.species_id:
                                child = parent1.crossover(c)
                                new_population.append(child.mutate())
                                found = True
                                break
                        if not found:
                            # If no mate was found, just mutate it
                            new_population.append(parent1.mutate())
                        # new_population.append(genome.FFGenome.create_fully_connected())
                        fill -= 1

                assert self.config.pop_size == len(new_population), 'Different population sizes!'
                # Updates current population
                self.population = new_population[:]
            else:
                self.__create_population()

            if checkpoint_interval is not None and time.time() > t0 + 60 * checkpoint_interval:
                self.__create_checkpoint(report)
                t0 = time.time()  # updates the counter
            elif checkpoint_generation is not None and self.generation % checkpoint_generation == 0:
                self.__create_checkpoint(report)
Пример #41
0
    def epoch(self, fitness_function, n):
        """ Runs NEAT's genetic algorithm for n epochs. """
        t0 = time.time()  # for saving checkpoints

        for g in range(n):
            self.generation += 1

            if self.config.report:
                print('\n ****** Running generation {0} ****** \n'.format(self.generation))

            gen_start = time.time()

            # Collect a list of all members from all species.
            population = []
            for s in self.species:
                population.extend(s.members)

            # Evaluate individuals
            fitness_function(population)
            self.total_evaluations += len(population)

            # Gather statistics.
            self._log_stats(population)

            # Print some statistics
            best = self.most_fit_genomes[-1]
            if self.config.report:
                fit_mean = mean([c.fitness for c in population])
                fit_std = stdev([c.fitness for c in population])
                print('Population\'s average fitness: {0:3.5f} stdev: {1:3.5f}'.format(fit_mean, fit_std))
                print('Best fitness: {0:3.5f} - size: {1!r} - species {2} - id {3}'.format(best.fitness, best.size(),
                                                                                           best.species_id, best.ID))
                print('Species length: {0:d} totaling {1:d} individuals'.format(len(self.species), sum(
                    [len(s.members) for s in self.species])))
                print('Species ID       : {0!s}'.format([s.ID for s in self.species]))
                print('Species size     : {0!s}'.format([len(s.members) for s in self.species]))
                print('Amount to spawn  : {0!s}'.format([s.spawn_amount for s in self.species]))
                print('Species age      : {0}'.format([s.age for s in self.species]))
                print('Species fitness  : {0!r}'.format([s.get_average_fitness() for s in self.species]))
                print('Species no improv: {0!r}'.format([s.no_improvement_age for s in self.species]))

            # Saves the best genome from the current generation if requested.
            if self.config.save_best:
                with open('best_genome_' + str(self.generation), 'wb') as f:
                    pickle.dump(best, f)

            # End when the fitness threshold is reached.
            if best.fitness >= self.config.max_fitness_threshold:
                if self.config.report:
                    print('\nBest individual in epoch {0} meets fitness threshold - complexity: {1!r}'.format(
                        self.generation, best.size()))
                break

            # Remove stagnated species.
            # TODO: Log species removal for visualization purposes.
            # TODO: Provide some sort of optional cross-species performance criteria, which
            # are then used to control stagnation and possibly the mutation rate configuration.
            # This scheme should be adaptive so that species do not evolve to become "cautious"
            # and only make very slow progress.
            new_species = []
            for s in self.species:
                s.update_stagnation()
                if s.no_improvement_age <= self.config.max_stagnation:
                    new_species.append(s)
                else:
                    if self.config.report:
                        print("\n   Species {0} with {1} members is stagnated: removing it".format(s.ID, len(s.members)))
            self.species = new_species

            # TODO: Break these out into user-configurable classes
            #  1. Species survival determination (currently hard-coded to be stagnation with a fixed number of generations).
            #  2. Species spawn allotment (currently provided in the diversity object).

            # Check for complete extinction.
            new_population = []
            if not self.species:
                if self.config.report:
                    print('All species extinct.')

                # If requested by the user, create a completely new population,
                # otherwise raise an exception.
                if self.config.reset_on_extinction:
                    new_population = self._create_population()
                else:
                    raise MassExtinctionException()
            else:
                # Compute spawn levels for all current species and then reproduce.
                self.diversity.compute_spawn_amount(self.species)
                for s in self.species:
                    # Verify that all species received non-zero spawn counts, as the speciation mechanism
                    # is intended to allow initially less fit species time to improve before making them
                    # extinct via the stagnation mechanism.
                    assert s.spawn_amount > 0
                    # The Species.reproduce keeps one random child as its new representative, and
                    # returns the rest as a list, which must be sorted into species.
                    new_population.extend(s.reproduce(self.config, self.genome_indexer))

            self._speciate(new_population)

            if self.config.checkpoint_interval is not None and time.time() > t0 + 60 * self.config.checkpoint_interval:
                if self.config.report:
                    print('Creating timed checkpoint file at generation: {0}'.format(self.generation))
                self.save_checkpoint()

                # Update the checkpoint time.
                t0 = time.time()
            elif self.config.checkpoint_generation is not None and self.generation % self.config.checkpoint_generation == 0:
                if self.config.report:
                    print('Creating generation checkpoint file at generation: {0}'.format(self.generation))
                self.save_checkpoint()

            if self.config.report:
                print("Generation time: {0:.3f} sec".format(time.time() - gen_start))
Пример #42
0
def report():
    print "\nNumber of runs: {0!s}\n".format(sys.argv[2])
    print "\t Gen. \t Nodes \t Conn. \t Evals. \t Score \n"
    print "average  {0:3.2f} \t {1:2.2f} \t {2:2.2f} \t {3:2.2f} \t {4:2.2f}".format(mean(total_gens), mean(total_nodes), mean(total_conns), mean(total_evals), mean(total_score))
    print "stdev    {0:3.2f} \t {1:2.2f} \t {2:2.2f} \t {3:2.2f} \t {4:2.2f}".format(stdev(total_gens), stdev(total_nodes), stdev(total_conns), stdev(total_evals), stdev(total_score))