Пример #1
0
    def post_evaluate(self, config, population, species, best_genome):
        self.most_fit_genomes.append(copy.deepcopy(best_genome))

        # Store the fitnesses of the members of each currently active species.
        species_stats = {}
        #species_cross_validation_stats = {}
        for sid, s in iteritems(species.species):
            species_stats[sid] = dict(
                (k, v.fitness) for k, v in iteritems(s.members))
            ##species_cross_validation_stats[sid] = dict((k, v.cross_fitness) for
##                                                       k, v in iteritems(s.members))
        self.generation_statistics.append(species_stats)
    def create(genome, config, time_constant):
        """ Receives a genome and returns its phenotype (a CTRNN). """
        genome_config = config.genome_config
        required = required_for_output(genome_config.input_keys, genome_config.output_keys, genome.connections)

        # Gather inputs and expressed connections.
        node_inputs = {}
        for cg in itervalues(genome.connections):
            if not cg.enabled:
                continue

            i, o = cg.key
            if o not in required and i not in required:
                continue

            if o not in node_inputs:
                node_inputs[o] = [(i, cg.weight)]
            else:
                node_inputs[o].append((i, cg.weight))

        node_evals = {}
        for node_key, inputs in iteritems(node_inputs):
            node = genome.nodes[node_key]
            activation_function = genome_config.activation_defs.get(node.activation)
            aggregation_function = genome_config.aggregation_function_defs.get(node.aggregation)
            node_evals[node_key] = CTRNNNodeEval(time_constant,
                                                 activation_function,
                                                 aggregation_function,
                                                 node.bias,
                                                 node.response,
                                                 inputs)

        return CTRNN(genome_config.input_keys, genome_config.output_keys, node_evals)
    def advance(self, inputs, advance_time, time_step=None):
        """
        Advance the simulation by the given amount of time, assuming that inputs are
        constant at the given values during the simulated time.
        """
        final_time_seconds = self.time_seconds + advance_time

        # Use half of the max allowed time step if none is given.
        if time_step is None:  # pragma: no cover
            time_step = 0.5 * self.get_max_time_step()

        if len(self.input_nodes) != len(inputs):
            raise RuntimeError("Expected {0} inputs, got {1}".format(len(self.input_nodes), len(inputs)))

        while self.time_seconds < final_time_seconds:
            dt = min(time_step, final_time_seconds - self.time_seconds)

            ivalues = self.values[self.active]
            ovalues = self.values[1 - self.active]
            self.active = 1 - self.active

            for i, v in zip(self.input_nodes, inputs):
                ivalues[i] = v
                ovalues[i] = v

            for node_key, ne in iteritems(self.node_evals):
                node_inputs = [ivalues[i] * w for i, w in ne.links]
                s = ne.aggregation(node_inputs)
                z = ne.activation(ne.bias + ne.response * s)
                ovalues[node_key] += dt / ne.time_constant * (-ovalues[node_key] + z)

            self.time_seconds += dt

        ovalues = self.values[1 - self.active]
        return [ovalues[i] for i in self.output_nodes]
    def update(self, species_set, generation):
        """
        Required interface method. Updates species fitness history information,
        checking for ones that have not improved in max_stagnation generations,
        and - unless it would result in the number of species dropping below the configured
        species_elitism parameter if they were removed,
        in which case the highest-fitness species are spared -
        returns a list with stagnant species marked for removal.
        """
        species_data = []
        for sid, s in iteritems(species_set.species):
            if s.fitness_history:
                prev_fitness = max(s.fitness_history)
            else:
                prev_fitness = -sys.float_info.max

            s.fitness = self.species_fitness_func(s.get_fitnesses())
            s.fitness_history.append(s.fitness)
            s.adjusted_fitness = None
            if prev_fitness is None or s.fitness > prev_fitness:
                s.last_improved = generation

            species_data.append((sid, s))

        # Sort in ascending fitness order.
        species_data.sort(key=lambda x: x[1].fitness)

        result = []
        species_fitnesses = []
        num_non_stagnant = len(species_data)
        for idx, (sid, s) in enumerate(species_data):
            # Override stagnant state if marking this species as stagnant would
            # result in the total number of species dropping below the limit.
            # Because species are in ascending fitness order, less fit species
            # will be marked as stagnant first.
            stagnant_time = generation - s.last_improved
            is_stagnant = False
            if num_non_stagnant > self.stagnation_config.species_elitism:
                is_stagnant = stagnant_time >= self.stagnation_config.max_stagnation

            if (len(species_data) -
                    idx) <= self.stagnation_config.species_elitism:
                is_stagnant = False

            if is_stagnant:
                num_non_stagnant -= 1

            result.append((sid, s, is_stagnant))
            species_fitnesses.append(s.fitness)

        return result
    def __init__(self, config, initial_state=None):

        self.checkpointer = Checkpointer(
            generation_interval=3,
            time_interval_seconds=None,
            filename_prefix=
            './checkpoints/parallel-group-4000-train-neat-checkpoint-')
        self.reporters = ReporterSet()
        self.config = config
        self.has_eval = {}
        stagnation = config.stagnation_type(config.stagnation_config,
                                            self.reporters)

        if initial_state is None:
            self.reproduction = config.reproduction_type(
                config.reproduction_config, self.reporters, stagnation)
        if config.fitness_criterion == 'max':
            self.fitness_criterion = max
        elif config.fitness_criterion == 'min':
            self.fitness_criterion = min
        elif config.fitness_criterion == 'mean':
            self.fitness_criterion = mean
        elif not config.no_fitness_termination:
            raise RuntimeError("Unexpected fitness_criterion: {0!r}".format(
                config.fitness_criterion))

        if initial_state is None:
            # Create a population from scratch, then partition into species.
            self.population = self.reproduction.create_new(
                config.genome_type, config.genome_config, config.pop_size)
            self.species = config.species_set_type(config.species_set_config,
                                                   self.reporters)
            self.generation = 0
            self.species.speciate(config, self.population, self.generation)
        else:
            self.population, self.species, self.generation = initial_state
            genomes = list(iteritems(self.population))
            start_idx = 0
            for genome_id, genome in genomes:
                self.has_eval[genome_id] = 1
                if genome_id > start_idx:
                    start_idx = genome_id
            self.reproduction = config.reproduction_type(
                config.reproduction_config, self.reporters, stagnation,
                start_idx + 1)

        self.best_genome = []
    def __init__(self, inputs, outputs, node_evals):
        self.input_nodes = inputs
        self.output_nodes = outputs
        self.node_evals = node_evals

        self.values = [{}, {}]
        for v in self.values:
            for k in inputs + outputs:
                v[k] = 0.0

            for node, ne in iteritems(self.node_evals):
                v[node] = 0.0
                for i, w in ne.links:
                    v[i] = 0.0

        self.active = 0
        self.time_seconds = 0.0
 def __init__(self, name, **default_dict):
     self.name = name
     for n, default in iteritems(default_dict):
         self._config_items[n] = [self._config_items[n][0], default]
     for n in iterkeys(self._config_items):
         setattr(self, n + "_name", self.config_item_name(n))
Пример #8
0
    def speciate(self, config, population, generation):
        """
        Place genomes into species by genetic similarity.

        Note that this method assumes the current representatives of the species are from the old
        generation, and that after speciation has been performed, the old representatives should be
        dropped and replaced with representatives from the new generation.  If you violate this
        assumption, you should make sure other necessary parts of the code are updated to reflect
        the new behavior.
        """
        assert isinstance(population, dict)

        compatibility_threshold = self.species_set_config.compatibility_threshold

        # Find the best representatives for each existing species.
        unspeciated = set(iterkeys(population))
        distances = GenomeDistanceCache(config.genome_config)
        new_representatives = {}
        new_members = {}
        for sid, s in iteritems(self.species):
            candidates = []
            for gid in unspeciated:
                g = population[gid]
                d = distances(s.representative, g)
                candidates.append((d, g))

            # The new representative is the genome closest to the current representative.
            ignored_rdist, new_rep = min(candidates, key=lambda x: x[0])
            new_rid = new_rep.key
            new_representatives[sid] = new_rid
            new_members[sid] = [new_rid]
            unspeciated.remove(new_rid)

        # Partition population into species based on genetic similarity.
        while unspeciated:
            gid = unspeciated.pop()
            g = population[gid]

            # Find the species with the most similar representative.
            candidates = []
            for sid, rid in iteritems(new_representatives):
                rep = population[rid]
                d = distances(rep, g)
                if d < compatibility_threshold:
                    candidates.append((d, sid))

            if candidates:
                ignored_sdist, sid = min(candidates, key=lambda x: x[0])
                new_members[sid].append(gid)
            else:
                # No species is similar enough, create a new species, using
                # this genome as its representative.
                sid = next(self.indexer)
                new_representatives[sid] = gid
                new_members[sid] = [gid]

        # Update species collection based on new speciation.
        self.genome_to_species = {}
        for sid, rid in iteritems(new_representatives):
            s = self.species.get(sid)
            if s is None:
                s = Species(sid, generation)
                self.species[sid] = s

            members = new_members[sid]
            for gid in members:
                self.genome_to_species[gid] = sid

            member_dict = dict((gid, population[gid]) for gid in members)
            s.update(population[rid], member_dict)

        gdmean = mean(itervalues(distances.distances))
        gdstdev = stdev(itervalues(distances.distances))
        self.reporters.info(
            'Mean genetic distance {0:.3f}, standard deviation {1:.3f}'.format(gdmean, gdstdev))
    def run(self, fitness_function, n=None):
        """
        Runs NEAT's genetic algorithm for at most n generations.  If n
        is None, run until solution is found or extinction occurs.

        The user-provided fitness_function must take only two arguments:
            1. The population as a list of (genome id, genome) tuples.
            2. The current configuration object.

        The return value of the fitness function is ignored, but it must assign
        a Python float to the `fitness` member of each genome.

        The fitness function is free to maintain external state, perform
        evaluations in parallel, etc.

        It is assumed that fitness_function does not modify the list of genomes,
        the genomes themselves (apart from updating the fitness member),
        or the configuration object.
        """

        if self.config.no_fitness_termination and (n is None):
            raise RuntimeError(
                "Cannot have no generational limit with no fitness termination"
            )

        parallel = ParallelEvaluator(num_workers=5,
                                     eval_function=fitness_function)

        if self.generation > 0:  # start from saved_state

            self.reporters.start_generation(self.generation)

            # Gather and report statistics.
            best = None

            for g in itervalues(self.population):
                if best is None or g.fitness > best.fitness:
                    best = g
            self.reporters.post_evaluate(self.config, self.population,
                                         self.species, best)

            # Track the best genome ever seen.
            self.best_genome.append((best, best.fitness))

            # Create the next generation from the current generation.
            self.population = self.reproduction.reproduce(
                self.config, self.species, self.config.pop_size,
                self.generation)

            # Check for complete extinction.
            if not self.species.species:
                self.reporters.complete_extinction()

                # If requested by the user, create a completely new population,
                # otherwise raise an exception.
                if self.config.reset_on_extinction:
                    self.population = self.reproduction.create_new(
                        self.config.genome_type, self.config.genome_config,
                        self.config.pop_size)
                else:
                    raise CompleteExtinctionException()

            # Divide the new population into species.
            self.species.speciate(self.config, self.population,
                                  self.generation)

            self.reporters.end_generation(self.config, self.population,
                                          self.species)

            self.generation += 1

        k = 0
        while n is None or k < n:
            k += 1
            self.checkpointer.start_generation(self.generation)
            self.reporters.start_generation(self.generation)

            # Evaluate all genomes using the user-provided function.
            #fitness_function(list(iteritems(self.population)), self.config)

            genomes_l = []

            for genome_id, genome in list(iteritems(self.population)):

                if self.has_eval.__contains__(genome_id):
                    continue
                else:
                    self.has_eval[genome_id] = 1
                    genomes_l.append((genome_id, genome))

            #genomes = parallel.evaluate(list(iteritems(self.population)), self.config)
            genomes = parallel.evaluate(genomes_l, self.config)
            #print('---')
            for genome_id, genome in genomes:
                #print(genome_id, genome.fitness)
                self.population[genome_id] = genome

            self.species.speciate(self.config, self.population,
                                  self.generation)

            # Gather and report statistics.
            best = None
            for g in itervalues(self.population):
                if best is None or g.fitness > best.fitness:
                    best = g
            self.reporters.post_evaluate(self.config, self.population,
                                         self.species, best)

            # Track the best genome ever seen.
            #if self.best_genome is None or best.fitness > self.best_genome.fitness:
            #self.best_genome = best
            self.best_genome.append((best, best.fitness))

            if not self.config.no_fitness_termination:
                # End if the fitness threshold is reached.
                fv = self.fitness_criterion(
                    g.fitness for g in itervalues(self.population))
                if fv >= self.config.fitness_threshold:
                    #print(fv.item(),' >= ',  self.config.fitness_threshold)
                    self.reporters.found_solution(self.config, self.generation,
                                                  best)
                    break

            if self.generation - self.checkpointer.last_generation_checkpoint >= \
                self.checkpointer.generation_interval:
                print('save checkpoint')
                self.checkpointer.end_generation(self.config, self.population,
                                                 self.species)

            # Create the next generation from the current generation.
            self.population = self.reproduction.reproduce(
                self.config, self.species, self.config.pop_size,
                self.generation)

            # Check for complete extinction.
            if not self.species.species:
                self.reporters.complete_extinction()

                # If requested by the user, create a completely new population,
                # otherwise raise an exception.
                if self.config.reset_on_extinction:
                    self.population = self.reproduction.create_new(
                        self.config.genome_type, self.config.genome_config,
                        self.config.pop_size)
                else:
                    raise CompleteExtinctionException()

            # Divide the new population into species.
            self.species.speciate(self.config, self.population,
                                  self.generation)

            self.reporters.end_generation(self.config, self.population,
                                          self.species)

            self.generation += 1

        if self.config.no_fitness_termination:
            self.reporters.found_solution(self.config, self.generation,
                                          self.best_genome)

        return self.best_genome
Пример #10
0
    def reproduce(self, config, species, pop_size, generation):
        """
        Handles creation of genomes, either from scratch or by sexual or
        asexual reproduction from parents.
        """
        # TODO: I don't like this modification of the species and stagnation objects,
        # because it requires internal knowledge of the objects.

        # Filter out stagnated species, collect the set of non-stagnated
        # species members, and compute their average adjusted fitness.
        # The average adjusted fitness scheme (normalized to the interval
        # [0, 1]) allows the use of negative fitness values without
        # interfering with the shared fitness scheme.
        all_fitnesses = []
        remaining_species = []
        for stag_sid, stag_s, stagnant in self.stagnation.update(
                species, generation):
            if stagnant:
                self.reporters.species_stagnant(stag_sid, stag_s)
            else:
                all_fitnesses.extend(m.fitness
                                     for m in itervalues(stag_s.members))
                remaining_species.append(stag_s)
        # The above comment was not quite what was happening - now getting fitnesses
        # only from members of non-stagnated species.
        #print("#########################################################################{0}".format(remaining_species.__len__()))

        # No species left.
        if not remaining_species:
            species.species = {}
            return {}  # was []

        # Find minimum/maximum fitness across the entire population, for use in
        # species adjusted fitness computation.
        min_fitness = min(all_fitnesses)
        max_fitness = max(all_fitnesses)
        # Do not allow the fitness range to be zero, as we divide by it below.
        # TODO: The ``1.0`` below is rather arbitrary, and should be configurable.
        fitness_range = max(1.0, max_fitness - min_fitness)
        for afs in remaining_species:
            # Compute adjusted fitness.
            msf = mean([m.fitness for m in itervalues(afs.members)])
            af = (msf - min_fitness) / fitness_range
            afs.adjusted_fitness = af

        adjusted_fitnesses = [s.adjusted_fitness for s in remaining_species]
        avg_adjusted_fitness = mean(adjusted_fitnesses)  # type: float
        self.reporters.info(
            "Average adjusted fitness: {:.3f}".format(avg_adjusted_fitness))

        # Compute the number of new members for each species in the new generation.
        previous_sizes = [len(s.members) for s in remaining_species]
        min_species_size = self.reproduction_config.min_species_size
        # Isn't the effective min_species_size going to be max(min_species_size,
        # self.reproduction_config.elitism)? That would probably produce more accurate tracking
        # of population sizes and relative fitnesses... doing. TODO: document.
        min_species_size = max(min_species_size,
                               self.reproduction_config.elitism)
        spawn_amounts = self.compute_spawn(adjusted_fitnesses, previous_sizes,
                                           pop_size, min_species_size)

        new_population = {}
        species.species = {}
        for spawn, s in zip(spawn_amounts, remaining_species):
            # If elitism is enabled, each species always at least gets to retain its elites.
            spawn = max(spawn, self.reproduction_config.elitism)

            assert spawn > 0

            # The species has at least one member for the next generation, so retain it.
            old_members = list(iteritems(s.members))
            s.members = {}
            species.species[s.key] = s

            # Sort members in order of descending fitness.
            old_members.sort(reverse=True, key=lambda x: x[1].fitness)

            # Transfer elites to new generation.
            if self.reproduction_config.elitism > 0:
                for i, m in old_members[:self.reproduction_config.elitism]:
                    new_population[i] = m
                    spawn -= 1

            if spawn <= 0:
                continue

            # Only use the survival threshold fraction to use as parents for the next generation.
            repro_cutoff = int(
                math.ceil(self.reproduction_config.survival_threshold *
                          len(old_members)))
            # Use at least two parents no matter what the threshold fraction result is.
            repro_cutoff = max(repro_cutoff, 2)
            old_members = old_members[:repro_cutoff]

            # Randomly choose parents and produce the number of offspring allotted to the species.
            while spawn > 0:
                spawn -= 1

                parent1_id, parent1 = random.choice(old_members)
                parent2_id, parent2 = random.choice(old_members)

                # Note that if the parents are not distinct, crossover will produce a
                # genetically identical clone of the parent (but with a different ID).
                gid = next(self.genome_indexer)
                child = config.genome_type(gid)
                child.configure_crossover(parent1, parent2,
                                          config.genome_config)
                child.mutate(config.genome_config)
                new_population[gid] = child
                self.ancestors[gid] = (parent1_id, parent2_id)

        return new_population