Пример #1
0
def main(args):

    assert os.path.isdir(os.path.expanduser(
        args.dataset)), "--dataset path is not a directory"
    args.cover = [
        tile for tile in tiles_from_csv(os.path.expanduser(args.cover))
    ] if args.cover else None
    config = load_config(args.config)

    if not args.workers:
        args.workers = os.cpu_count()

    print("neo dataset {} on CPU, with {} workers".format(
        args.mode, args.workers),
          file=sys.stderr,
          flush=True)

    if args.mode == "check":
        check_classes(config)
        check_channels(config)

        # TODO check dataset

    if args.mode == "weights":
        check_classes(config)
        weights = compute_classes_weights(args.dataset, config["classes"],
                                          args.cover, args.workers)
        print(",".join(map(str, weights)))
Пример #2
0
def main(args):
    config = load_config(args.config)
    check_channels(config)
    check_classes(config)

    assert torch.cuda.is_available(
    ), "No GPU support found. Check CUDA and NVidia Driver install."
    assert torch.distributed.is_nccl_available(
    ), "No NCCL support found. Check your PyTorch install."

    world_size = torch.cuda.device_count()
    args.bs = args.bs if args.bs is not None else math.floor(os.cpu_count() /
                                                             world_size)
    args.workers = args.workers if args.workers is not None else args.bs

    palette, transparency = make_palette(
        [classe["color"] for classe in config["classes"]])
    args.cover = [
        tile for tile in tiles_from_csv(os.path.expanduser(args.cover))
    ] if args.cover else None

    args.out = os.path.expanduser(args.out)
    log = Logs(os.path.join(args.out, "log"))

    chkpt = torch.load(args.checkpoint, map_location=torch.device("cpu"))
    chkpt["loader"] = "SemSeg"
    log.log("neo predict on {} GPUs, with {} workers/GPU and {} tiles/batch".
            format(world_size, args.workers, args.bs))
    log.log("Model {} - UUID: {}".format(chkpt["nn"], chkpt["uuid"]))
    log.log("---")
    loader = load_module("neat_eo.loaders.{}".format(chkpt["loader"].lower()))

    lock_file = os.path.abspath(os.path.join(args.out, str(uuid.uuid1())))

    dataset = getattr(loader, chkpt["loader"])(
        config,
        chkpt["shape_in"][1:3],
        args.dataset,
        args.cover,
        mode="predict",
        metatiles=args.metatiles,
        keep_borders=args.keep_borders,
    )

    mp.spawn(gpu_worker,
             nprocs=world_size,
             args=(world_size, lock_file, args, config, dataset, palette,
                   transparency))

    if os.path.exists(lock_file):
        os.remove(lock_file)

    if not args.no_web_ui and dataset.cover:
        template = "leaflet.html" if not args.web_ui_template else args.web_ui_template
        base_url = args.web_ui_base_url if args.web_ui_base_url else "."
        web_ui(args.out, base_url, dataset.cover, dataset.cover, "png",
               template)
Пример #3
0
def main(args):
    config = load_config(args.config)
    check_classes(config)
    index = [
        i for i in (list(range(len(config["classes"]))))
        if config["classes"][i]["title"] == args.type
    ]
    assert index, "Requested type {} not found among classes title in the config file.".format(
        args.type)

    masks = list(tiles_from_dir(args.masks, xyz_path=True))
    assert len(masks), "empty masks directory: {}".format(args.masks)

    print("neo vectorize {} from {}".format(args.type, args.masks),
          file=sys.stderr,
          flush=True)

    if os.path.dirname(os.path.expanduser(args.out)):
        os.makedirs(os.path.dirname(os.path.expanduser(args.out)),
                    exist_ok=True)
    out = open(args.out, "w", encoding="utf-8")
    assert out, "Unable to write in output file"

    out.write('{"type":"FeatureCollection","features":[')

    first = True
    for tile, path in tqdm(masks, ascii=True, unit="mask"):
        mask = (np.array(Image.open(path).convert("P"),
                         dtype=np.uint8) == index).astype(np.uint8)
        try:
            C, W, H = mask.shape
        except:
            W, H = mask.shape
        transform = rasterio.transform.from_bounds(
            (*mercantile.bounds(tile.x, tile.y, tile.z)), W, H)

        for shape, value in rasterio.features.shapes(mask,
                                                     transform=transform,
                                                     mask=mask):
            geom = '"geometry":{{"type": "Polygon", "coordinates":{}}}'.format(
                json.dumps(shape["coordinates"]))
            out.write('{}{{"type":"Feature",{}}}'.format(
                "" if first else ",", geom))
            first = False

    out.write("]}")
Пример #4
0
def main(args):
    config = load_config(args.config)
    args.out = os.path.expanduser(args.out)
    args.cover = [
        tile for tile in tiles_from_csv(os.path.expanduser(args.cover))
    ] if args.cover else None
    if args.classes_weights:
        try:
            args.classes_weights = list(
                map(float, args.classes_weights.split(",")))
        except:
            assert args.classes_weights == "auto", "invalid --classes_weights value"
    else:
        args.classes_weights = [
            classe["weight"] for classe in config["classes"]
        ]

    args.tiles_weights = ([(tile, weight) for tile, weight in tiles_from_csv(
        os.path.expanduser(args.tiles_weights), extra_columns=True)]
                          if args.tiles_weights else None)

    config["model"][
        "loader"] = args.loader if args.loader else config["model"]["loader"]
    config["model"]["ts"] = tuple(map(
        int, args.ts.split(","))) if args.ts else config["model"]["ts"]
    config["model"]["nn"] = args.nn if args.nn else config["model"]["nn"]
    config["model"]["encoder"] = args.encoder if args.encoder else config[
        "model"]["encoder"]
    config["train"]["bs"] = args.bs if args.bs else config["train"]["bs"]
    config["train"][
        "loss"] = args.loss if args.loss else config["train"]["loss"]
    config["train"]["optimizer"][
        "name"] = args.optimizer if args.optimizer else config["train"][
            "optimizer"]["name"]
    config["train"]["optimizer"][
        "lr"] = args.lr if args.lr else config["train"]["optimizer"]["lr"]
    check_classes(config)
    check_channels(config)
    check_model(config)

    log = Logs(os.path.join(args.out, "log"))

    assert torch.cuda.is_available(
    ), "No GPU support found. Check CUDA and NVidia Driver install."
    assert torch.distributed.is_nccl_available(
    ), "No NCCL support found. Check your PyTorch install."
    world_size = torch.cuda.device_count() if args.train_dataset else 1

    args.workers = min(
        config["train"]["bs"] if not args.workers else args.workers,
        math.floor(os.cpu_count() / world_size))
    assert args.eval_dataset or args.train_dataset, "Provide at least one dataset"

    if args.eval_dataset and not args.train_dataset and not args.checkpoint:
        log.log(
            "\n\nNOTICE: No Checkpoint provided for eval only. Seems peculiar.\n\n"
        )

    log.log("neo train/eval on {} GPUs, with {} workers/GPU".format(
        world_size, args.workers))
    log.log("---")

    loader = load_module("neat_eo.loaders.{}".format(
        config["model"]["loader"].lower()))

    train_dataset = None
    if args.train_dataset:
        assert os.path.isdir(os.path.expanduser(
            args.train_dataset)), "--train_dataset path is not a directory"
        train_dataset = getattr(loader, config["model"]["loader"])(
            config, config["model"]["ts"], args.train_dataset, args.cover,
            args.tiles_weights, "train")
        assert len(train_dataset), "Empty or Invalid --train_dataset content"
        shape_in = train_dataset.shape_in
        shape_out = train_dataset.shape_out
        log.log("\nDataSet Training:        {}".format(args.train_dataset))

        if args.classes_weights == "auto":
            args.classes_weights = compute_classes_weights(
                args.train_dataset, config["classes"], args.cover,
                os.cpu_count())

    eval_dataset = None
    if args.eval_dataset:
        assert os.path.isdir(os.path.expanduser(
            args.eval_dataset)), "--eval_dataset path is not a directory"
        eval_dataset = getattr(loader, config["model"]["loader"])(
            config, config["model"]["ts"], args.eval_dataset, args.cover,
            args.tiles_weights, "eval")
        assert len(eval_dataset), "Empty or Invalid --eval_dataset content"
        shape_in = eval_dataset.shape_in
        shape_out = eval_dataset.shape_out
        log.log("DataSet Eval:            {}".format(args.eval_dataset))

        if not args.train_dataset and args.classes_weights == "auto":
            args.classes_weights = compute_classes_weights(
                args.eval_dataset, config["classes"], args.cover,
                os.cpu_count())

    log.log("\n--- Input tensor")
    num_channel = 1  # 1-based numerotation
    for channel in config["channels"]:
        for band in channel["bands"]:
            log.log("Channel {}:\t\t {} - (band:{})".format(
                num_channel, channel["name"], band))
            num_channel += 1

    log.log("\n--- Output Classes ---")
    for c, classe in enumerate(config["classes"]):
        log.log("Class {}:\t\t {} ({:.2f})".format(c, classe["title"],
                                                   args.classes_weights[c]))

    log.log("\n--- Model ---")
    for hp in config["model"]:
        log.log("{}{}".format(hp.ljust(25, " "), config["model"][hp]))

    lock_file = os.path.abspath(os.path.join(args.out, str(uuid.uuid1())))
    mp.spawn(
        gpu_worker,
        nprocs=world_size,
        args=(world_size, lock_file, train_dataset, eval_dataset, shape_in,
              shape_out, args, config),
    )
    if os.path.exists(lock_file):
        os.remove(lock_file)
Пример #5
0
def main(args):
    assert not (args.label and args.format), "Format option not supported for label, output must be kept as png"
    try:
        args.bands = list(map(int, args.bands.split(","))) if args.bands else None
    except:
        raise ValueError("invalid --args.bands value")

    if not args.workers:
        args.workers = min(os.cpu_count(), len(args.rasters))

    if args.label:
        config = load_config(args.config)
        check_classes(config)
        colors = [classe["color"] for classe in config["classes"]]
        palette = make_palette(colors)

    assert len(args.ts.split(",")) == 2, "--ts expect width,height value (e.g 512,512)"
    width, height = list(map(int, args.ts.split(",")))

    cover = [tile for tile in tiles_from_csv(os.path.expanduser(args.cover))] if args.cover else None

    splits_path = os.path.join(os.path.expanduser(args.out), ".splits")

    args.out = os.path.expanduser(args.out)
    if os.path.dirname(os.path.expanduser(args.out)):
        os.makedirs(args.out, exist_ok=True)
    log = Logs(os.path.join(args.out, "log"), out=sys.stderr)

    raster = rasterio_open(os.path.expanduser(args.rasters[0]))
    args.bands = args.bands if args.bands else raster.indexes
    raster.close()
    print(
        "neo tile {} rasters on bands {}, on CPU with {} workers".format(len(args.rasters), args.bands, args.workers),
        file=sys.stderr,
        flush=True,
    )

    skip = []
    tiles_map = {}
    total = 0
    for path in args.rasters:
        raster = rasterio_open(os.path.expanduser(path))
        assert set(args.bands).issubset(set(raster.indexes)), "Missing bands in raster {}".format(path)

        try:
            w, s, e, n = transform_bounds(raster.crs, "EPSG:4326", *raster.bounds)
        except:
            log.log("WARNING: missing or invalid raster projection, SKIPPING: {}".format(path))
            skip.append(path)
            continue

        tiles = [mercantile.Tile(x=x, y=y, z=z) for x, y, z in mercantile.tiles(w, s, e, n, args.zoom)]
        tiles = list(set(tiles) & set(cover)) if cover else tiles
        total += len(tiles)

        for tile in tiles:
            tile_key = (str(tile.x), str(tile.y), str(tile.z))
            if tile_key not in tiles_map.keys():
                tiles_map[tile_key] = []
            tiles_map[tile_key].append(path)

        raster.close()
    assert total, "Nothing left to tile"

    if len(args.bands) == 1 or args.label:
        ext = "png" if args.format is None else args.format
    if len(args.bands) == 3:
        ext = "webp" if args.format is None else args.format
    if len(args.bands) > 3:
        ext = "tiff" if args.format is None else args.format

    tiles = []
    progress = tqdm(desc="Coverage tiling", total=total, ascii=True, unit="tile")
    with futures.ThreadPoolExecutor(args.workers) as executor:

        def worker(path):

            if path in skip:
                return None


            raster = rasterio_open(path)
            w, s, e, n = transform_bounds(raster.crs, "EPSG:4326", *raster.bounds)
            tiles = [mercantile.Tile(x=x, y=y, z=z) for x, y, z in mercantile.tiles(w, s, e, n, args.zoom)]
            tiled = []

            for tile in tiles:

                if cover and tile not in cover:
                    continue

                w, s, e, n = mercantile.xy_bounds(tile)

                warp_vrt = WarpedVRT(
                    raster,
                    crs="epsg:3857",
                    resampling=Resampling.bilinear,
                    add_alpha=False,
                    transform=from_bounds(w, s, e, n, width, height),
                    width=width,
                    height=height,
                )

                data = warp_vrt.read(
                    out_shape=(len(args.bands), width, height), indexes=args.bands, window=warp_vrt.window(w, s, e, n)
                )
                if data.dtype == "uint16":  # GeoTiff could be 16 bits
                    data = np.uint8(data / 256)
                elif data.dtype == "uint32":  # or 32 bits
                    data = np.uint8(data / (256 * 256))

                image = np.moveaxis(data, 0, 2)  # C,H,W -> H,W,C

                tile_key = (str(tile.x), str(tile.y), str(tile.z))
                if (
                    not args.label
                    and len(tiles_map[tile_key]) == 1
                    and is_nodata(image, args.nodata, args.nodata_threshold, args.keep_borders)
                ):
                    progress.update()
                    continue

                if len(tiles_map[tile_key]) > 1:
                    out = os.path.join(splits_path, str(tiles_map[tile_key].index(path)))
                else:
                    out = args.out

                x, y, z = map(int, tile)

                if not args.label:
                    tile_image_to_file(out, mercantile.Tile(x=x, y=y, z=z), image, ext=ext)
                if args.label:
                    tile_label_to_file(out, mercantile.Tile(x=x, y=y, z=z), palette, args.nodata, image)

                if len(tiles_map[tile_key]) == 1:
                    tiled.append(mercantile.Tile(x=x, y=y, z=z))


                progress.update()

            raster.close()
            return tiled

        for tiled in executor.map(worker, args.rasters):
            if tiled is not None:
                tiles.extend(tiled)

    total = sum([1 for tile_key in tiles_map.keys() if len(tiles_map[tile_key]) > 1])
    progress = tqdm(desc="Aggregate splits", total=total, ascii=True, unit="tile")
    with futures.ThreadPoolExecutor(args.workers) as executor:

        def worker(tile_key):

            if len(tiles_map[tile_key]) == 1:
                return

            image = np.zeros((width, height, len(args.bands)), np.uint8)

            x, y, z = map(int, tile_key)
            for i in range(len(tiles_map[tile_key])):
                root = os.path.join(splits_path, str(i))
                _, path = tile_from_xyz(root, x, y, z)

                if not args.label:
                    split = tile_image_from_file(path)
                if args.label:
                    split = tile_label_from_file(path)

                if len(split.shape) == 2:
                    split = split.reshape((width, height, 1))  # H,W -> H,W,C

                assert image.shape == split.shape, "{}, {}".format(image.shape, split.shape)
                image[np.where(image == 0)] += split[np.where(image == 0)]

            if not args.label and is_nodata(image, args.nodata, args.nodata_threshold, args.keep_borders):
                progress.update()
                return

            tile = mercantile.Tile(x=x, y=y, z=z)

            if not args.label:
                tile_image_to_file(args.out, tile, image)

            if args.label:
                tile_label_to_file(args.out, tile, palette, image)

            progress.update()
            return tile

        for tiled in executor.map(worker, tiles_map.keys()):
            if tiled is not None:
                tiles.append(tiled)

        if splits_path and os.path.isdir(splits_path):
            shutil.rmtree(splits_path)  # Delete suffixes dir if any

    if tiles and not args.no_web_ui:
        template = "leaflet.html" if not args.web_ui_template else args.web_ui_template
        base_url = args.web_ui_base_url if args.web_ui_base_url else "."
        web_ui(args.out, base_url, tiles, tiles, ext, template)
Пример #6
0
def main(args):

    assert not (args.geojson is not None and args.pg is not None), "You have to choose between --pg or --geojson"
    assert len(args.ts.split(",")) == 2, "--ts expect width,height value (e.g 512,512)"

    config = load_config(args.config)
    check_classes(config)

    args.pg = config["auth"]["pg"] if not args.pg and "pg" in config["auth"].keys() else args.pg
    assert not (args.sql and not args.pg), "With --sql option, --pg dsn setting must also be provided"

    palette, transparency = make_palette([classe["color"] for classe in config["classes"]], complementary=True)
    index = [config["classes"].index(classe) for classe in config["classes"] if classe["title"] == args.type]
    assert index, "Requested type is not contains in your config file classes."
    burn_value = index[0]
    assert 0 < burn_value <= 255

    if args.sql:
        assert "limit" not in args.sql.lower(), "LIMIT is not supported"
        assert "TILE_GEOM" in args.sql, "TILE_GEOM filter not found in your SQL"
        sql = re.sub(r"ST_Intersects( )*\((.*)?TILE_GEOM(.*)?\)", "1=1", args.sql, re.I)
        assert sql and sql != args.sql, "Incorrect TILE_GEOM filter in your SQL"

    if os.path.dirname(os.path.expanduser(args.out)):
        os.makedirs(os.path.expanduser(args.out), exist_ok=True)
    args.out = os.path.expanduser(args.out)
    log = Logs(os.path.join(args.out, "log"), out=sys.stderr)

    tiles = [tile for tile in tiles_from_csv(os.path.expanduser(args.cover))]
    assert len(tiles), "Empty Cover: {}".format(args.cover)

    if args.geojson:
        zoom = tiles[0].z
        assert not [tile for tile in tiles if tile.z != zoom], "Unsupported zoom mixed cover. Use PostGIS instead"

        feature_map = collections.defaultdict(list)

        log.log("neo rasterize - Compute spatial index")
        for geojson_file in args.geojson:

            with open(os.path.expanduser(geojson_file)) as geojson:
                feature_collection = json.load(geojson)
                srid = geojson_srid(feature_collection)

                for i, feature in enumerate(tqdm(feature_collection["features"], ascii=True, unit="feature")):
                    feature_map = geojson_parse_feature(zoom, srid, feature_map, feature, args.buffer)

        features = args.geojson

    if args.sql:
        conn = psycopg2.connect(args.pg)
        db = conn.cursor()

        db.execute("""SELECT ST_Srid("1") AS srid FROM ({} LIMIT 1) AS t("1")""".format(sql))
        srid = db.fetchone()[0]
        assert srid and int(srid) > 0, "Unable to retrieve geometry SRID."

        features = args.sql

    if not len(feature_map):
        log.log("-----------------------------------------------")
        log.log("NOTICE: no feature to rasterize, seems peculiar")
        log.log("-----------------------------------------------")

    log.log("neo rasterize - rasterizing {} from {} on cover {}".format(args.type, features, args.cover))
    with open(os.path.join(os.path.expanduser(args.out), args.type.lower() + "_cover.csv"), mode="w") as cover:

        for tile in tqdm(tiles, ascii=True, unit="tile"):

            geojson = None

            if args.sql:
                w, s, e, n = tile_bbox(tile)
                tile_geom = "ST_Transform(ST_MakeEnvelope({},{},{},{}, 4326), {})".format(w, s, e, n, srid)

                query = """
                WITH
                  sql  AS ({}),
                  geom AS (SELECT "1" AS geom FROM sql AS t("1")),
                  json AS (SELECT '{{"type": "Feature", "geometry": '
                         || ST_AsGeoJSON((ST_Dump(ST_Transform(ST_Force2D(geom.geom), 4326))).geom, 6)
                         || '}}' AS features
                        FROM geom)
                SELECT '{{"type": "FeatureCollection", "features": [' || Array_To_String(array_agg(features), ',') || ']}}'
                FROM json
                """.format(
                    args.sql.replace("TILE_GEOM", tile_geom)
                )

                db.execute(query)
                row = db.fetchone()
                try:
                    geojson = json.loads(row[0])["features"] if row and row[0] else None
                except Exception:
                    log.log("Warning: Invalid geometries, skipping {}".format(tile))
                    conn = psycopg2.connect(args.pg)
                    db = conn.cursor()

            if args.geojson:
                geojson = feature_map[tile] if tile in feature_map else None

            if geojson:
                num = len(geojson)
                out = geojson_tile_burn(tile, geojson, 4326, list(map(int, args.ts.split(","))), burn_value)

            if not geojson or out is None:
                num = 0
                out = np.zeros(shape=list(map(int, args.ts.split(","))), dtype=np.uint8)

            tile_label_to_file(args.out, tile, palette, transparency, out, append=args.append)
            cover.write("{},{},{}  {}{}".format(tile.x, tile.y, tile.z, num, os.linesep))

    if not args.no_web_ui:
        template = "leaflet.html" if not args.web_ui_template else args.web_ui_template
        base_url = args.web_ui_base_url if args.web_ui_base_url else "."
        tiles = [tile for tile in tiles_from_csv(args.cover)]
        web_ui(args.out, base_url, tiles, tiles, "png", template)
Пример #7
0
def main(args):

    if not args.masks or not args.labels:
        assert args.mode != "list", "Parameters masks and labels are mandatories in list mode."
        assert not (args.min or args.max), "Both --masks and --labels mandatory, for metric filtering."

    if args.min or args.max:
        config = load_config(args.config)

    args.out = os.path.expanduser(args.out)
    cover = [tile for tile in tiles_from_csv(os.path.expanduser(args.cover))] if args.cover else None

    args_minmax = set()
    args.min = {(m[0], m[1]): m[2] for m in args.min} if args.min else dict()
    args.max = {(m[0], m[1]): m[2] for m in args.max} if args.max else dict()
    args_minmax.update(args.min.keys())
    args_minmax.update(args.max.keys())
    minmax = dict()
    for mm in args_minmax:
        mm_min = float(args.min[mm]) if mm in args.min else 0.0
        mm_max = float(args.max[mm]) if mm in args.max else 1.0
        assert mm_min < mm_max, "--min must be lower than --max, on {}".format(mm)
        minmax[mm] = {
            "min": mm_min,
            "max": mm_max,
            "class_id": [c for c, classe in enumerate(config["classes"]) if classe["title"] == mm[0]][0],
            "module": load_module("neat_eo.metrics." + mm[1]),
        }

    if not args.workers:
        args.workers = os.cpu_count()

    print("neo compare {} on CPU, with {} workers".format(args.mode, args.workers), file=sys.stderr, flush=True)

    if args.images:
        tiles = [tile for tile in tiles_from_dir(args.images[0], cover=cover)]
        assert len(tiles), "Empty images dir: {}".format(args.images[0])

        for image in args.images[1:]:
            assert sorted(tiles) == sorted([tile for tile in tiles_from_dir(image, cover=cover)]), "Unconsistent images dirs"

    if args.labels and args.masks:
        tiles_masks = [tile for tile in tiles_from_dir(args.masks, cover=cover)]
        tiles_labels = [tile for tile in tiles_from_dir(args.labels, cover=cover)]
        if args.images:
            assert sorted(tiles) == sorted(tiles_masks) == sorted(tiles_labels), "Unconsistent images/label/mask directories"
        else:
            assert len(tiles_masks), "Empty masks dir: {}".format(args.masks)
            assert len(tiles_labels), "Empty labels dir: {}".format(args.labels)
            assert sorted(tiles_masks) == sorted(tiles_labels), "Label and Mask directories are not consistent"
            tiles = tiles_masks

    tiles_list = []
    tiles_compare = []
    progress = tqdm(total=len(tiles), ascii=True, unit="tile")
    log = False if args.mode == "list" else Logs(os.path.join(args.out, "log"))

    with futures.ThreadPoolExecutor(args.workers) as executor:

        def worker(tile):
            x, y, z = list(map(str, tile))

            if args.masks and args.labels:

                label = np.array(Image.open(os.path.join(args.labels, z, x, "{}.png".format(y))))
                mask = np.array(Image.open(os.path.join(args.masks, z, x, "{}.png".format(y))))

                assert label.shape == mask.shape, "Inconsistent tiles (size or dimensions)"

                metrics = dict()
                for mm in minmax:
                    try:
                        metrics[mm] = getattr(minmax[mm]["module"], "get")(
                            torch.as_tensor(label, device="cpu"),
                            torch.as_tensor(mask, device="cpu"),
                            minmax[mm]["class_id"],
                        )
                    except:
                        progress.update()
                        return False, tile

                    if not (minmax[mm]["min"] <= metrics[mm] <= minmax[mm]["max"]):
                        progress.update()
                        return True, tile

            tiles_compare.append(tile)

            if args.mode == "side":
                for i, root in enumerate(args.images):
                    img = tile_image_from_file(tile_from_xyz(root, x, y, z)[1], force_rgb=True)

                    if i == 0:
                        side = np.zeros((img.shape[0], img.shape[1] * len(args.images), 3))
                        side = np.swapaxes(side, 0, 1) if args.vertical else side
                        image_shape = img.shape
                    else:
                        assert image_shape[0:2] == img.shape[0:2], "Unconsistent image size to compare"

                    if args.vertical:
                        side[i * image_shape[0] : (i + 1) * image_shape[0], :, :] = img
                    else:
                        side[:, i * image_shape[0] : (i + 1) * image_shape[0], :] = img

                tile_image_to_file(args.out, tile, np.uint8(side))

            elif args.mode == "stack":
                for i, root in enumerate(args.images):
                    tile_image = tile_image_from_file(tile_from_xyz(root, x, y, z)[1], force_rgb=True)

                    if i == 0:
                        image_shape = tile_image.shape[0:2]
                        stack = tile_image / len(args.images)
                    else:
                        assert image_shape == tile_image.shape[0:2], "Unconsistent image size to compare"
                        stack = stack + (tile_image / len(args.images))

                tile_image_to_file(args.out, tile, np.uint8(stack))

            elif args.mode == "list":
                tiles_list.append([tile, metrics])

            progress.update()
            return True, tile

        for ok, tile in executor.map(worker, tiles):
            if not ok and log:
                log.log("Warning: skipping. {}".format(str(tile)))

    if args.mode == "list":
        with open(args.out, mode="w") as out:

            if args.geojson:
                out.write('{"type":"FeatureCollection","features":[')
                first = True

            for tile_list in tiles_list:
                tile, metrics = tile_list
                x, y, z = list(map(str, tile))

                if args.geojson:
                    prop = '"properties":{{"x":{},"y":{},"z":{}'.format(x, y, z)
                    for metric in metrics:
                        prop += ',"{}":{:.3f}'.format(metric, metrics[metric])
                    geom = '"geometry":{}'.format(json.dumps(feature(tile, precision=6)["geometry"]))
                    out.write('{}{{"type":"Feature",{},{}}}}}'.format("," if not first else "", geom, prop))
                    first = False

                if not args.geojson:
                    out.write("{},{},{}".format(x, y, z))
                    for metric in metrics:
                        out.write("\t{:.3f}".format(metrics[metric]))
                    out.write(os.linesep)

            if args.geojson:
                out.write("]}")

            out.close()

    base_url = args.web_ui_base_url if args.web_ui_base_url else "."

    if args.mode == "side" and not args.no_web_ui:
        template = "compare.html" if not args.web_ui_template else args.web_ui_template
        web_ui(args.out, base_url, tiles, tiles_compare, args.format, template, union_tiles=False)

    if args.mode == "stack" and not args.no_web_ui:
        template = "leaflet.html" if not args.web_ui_template else args.web_ui_template
        tiles = [tile for tile in tiles_from_dir(args.images[0])]
        web_ui(args.out, base_url, tiles, tiles_compare, args.format, template)
Пример #8
0
def main(args):
    config = load_config(args.config)
    args.cover = [
        tile for tile in tiles_from_csv(os.path.expanduser(args.cover))
    ] if args.cover else None
    if args.classes_weights:
        try:
            args.classes_weights = list(
                map(float, args.classes_weights.split(",")))
        except:
            assert args.classes_weights == "auto", "invalid --classes_weights value"
            args.classes_weights = compute_classes_weights(
                args.dataset, config["classes"], args.cover, os.cpu_count())
    else:
        args.classes_weights = [
            classe["weight"] for classe in config["classes"]
        ]

    args.tiles_weights = ([(tile, weight) for tile, weight in tiles_from_csv(
        os.path.expanduser(args.tiles_weights), extra_columns=True)]
                          if args.tiles_weights else None)

    args.bs = args.bs if args.bs else config["train"]["bs"]
    check_classes(config)
    check_channels(config)
    check_model(config)

    assert torch.cuda.is_available(
    ), "No GPU support found. Check CUDA and NVidia Driver install."
    assert torch.distributed.is_nccl_available(
    ), "No NCCL support found. Check your PyTorch install."
    world_size = 1  # Hard Coded since eval MultiGPUs not yet implemented

    args.workers = min(args.bs if not args.workers else args.workers,
                       math.floor(os.cpu_count() / world_size))

    print("neo eval on 1 GPU, with {} workers, and {} tiles/batch".format(
        args.workers, args.bs))

    loader = load_module("neat_eo.loaders.{}".format(
        config["model"]["loader"].lower()))

    assert os.path.isdir(os.path.expanduser(
        args.dataset)), "--dataset path is not a directory"
    dataset = getattr(loader,
                      config["model"]["loader"])(config, config["model"]["ts"],
                                                 args.dataset, args.cover,
                                                 args.tiles_weights, "eval")
    assert len(dataset), "Empty or Invalid --dataset content"
    shape_in = dataset.shape_in
    shape_out = dataset.shape_out
    print("DataSet Eval:            {}".format(args.dataset))

    print("\n--- Input tensor")
    num_channel = 1  # 1-based numerotation
    for channel in config["channels"]:
        for band in channel["bands"]:
            print("Channel {}:\t\t {} - (band:{})".format(
                num_channel, channel["name"], band))
            num_channel += 1

    print("\n--- Output Classes ---")
    for c, classe in enumerate(config["classes"]):
        print("Class {}:\t\t {} ({:.2f})".format(c, classe["title"],
                                                 args.classes_weights[c]))

    print("\n--- Model ---")
    for hp in config["model"]:
        print("{}{}".format(hp.ljust(25, " "), config["model"][hp]))

    lock_file = os.path.abspath(os.path.join("/tmp", str(uuid.uuid1())))
    mp.spawn(gpu_worker,
             nprocs=world_size,
             args=(world_size, lock_file, dataset, shape_in, shape_out, args,
                   config))
    if os.path.exists(lock_file):
        os.remove(lock_file)
Пример #9
0
def main(args):
    assert args.cover or args.granules or args.scenes, "Either --cover OR --granules OR --scenes is mandatory"
    assert not (args.download
                and not args.out), "--download implies out parameter"
    assert args.limit, "What about increasing --limit value ?"
    config = load_config(args.config)

    if args.cover:
        args.pg = args.pg if args.pg else config["auth"]["pg"]
        assert args.pg, "PostgreSQL connection settting is mandatory with --cover"
        args.granules = tiles_to_granules(
            tiles_from_csv(os.path.expanduser(args.cover)), args.pg)

    if args.out:
        args.out = os.path.expanduser(args.out)
        os.makedirs(args.out, exist_ok=True)
        log = Logs(os.path.join(args.out, "log"), out=sys.stderr)
    else:
        log = Logs(None, out=sys.stderr)

    log.log("neo sat on granules: {}".format(" ".join(args.granules)))
    scenes = search_scenes(args, log)

    if args.download:

        log.log("")
        log.log(
            "============================================================================="
        )
        log.log("Downloading selected scenes")
        log.log(
            "============================================================================="
        )

        report = []
        login, password = dict([
            auth.split("=") for auth in config["auth"]["theia"].split(" ")
        ]).values()

        with futures.ThreadPoolExecutor(args.workers) as executor:

            def worker(scene):

                scene_dir = os.path.join(
                    args.out, scene["dir"]
                    [:42])  # 42 related to Theia MD issue, dirty workaround
                if not os.path.isabs(scene_dir):
                    scene_dir = "./" + scene_dir

                if glob.glob(scene_dir + "*"):
                    scene["dir"] = glob.glob(scene_dir + "*")[0]
                    return scene, None, True  # Already Downloaded

                token = get_token(login, password)
                url = THEIA_URL + "/resto2/collections/SENTINEL2/{}/download/?issuerId=theia".format(
                    scene["uuid"])
                resp = requests.get(
                    url,
                    headers={"Authorization": "Bearer {}".format(token)},
                    stream=True)
                if resp is None:
                    return scene, None, False  # Auth issue

                zip_path = os.path.join(args.out, scene["uuid"] + ".zip")
                with open(zip_path, "wb") as fp:
                    progress = tqdm(unit="B",
                                    desc=scene["uuid"],
                                    total=int(resp.headers["Content-Length"]))
                    for chunk in resp.iter_content(chunk_size=16384):
                        progress.update(16384)
                        fp.write(chunk)

                    return scene, zip_path, True

                return scene, None, False  # Write issue

            for scene, zip_path, ok in executor.map(worker, scenes):
                if zip_path and md5(zip_path) == scene["checksum"]:
                    scene["dir"] = os.path.dirname(
                        ZipFile(zip_path).namelist()[0])
                    ZipFile(zip_path).extractall(args.out)
                    os.remove(zip_path)
                    report.append("Scene {} available in {}".format(
                        scene["uuid"], scene["dir"]))
                elif ok:
                    report.append(
                        "SKIPPING downloading {}, as already in {}".format(
                            scene["uuid"], scene["dir"]))
                else:
                    report.append("ERROR: Unable to retrieve Scene {}".format(
                        scene["uuid"]))

        log.log("")
        log.log(
            "============================================================================="
        )
        for line in report:
            log.log(line)
        log.log(
            "============================================================================="
        )