Пример #1
0
    def init_objects(self):
        # Add meter
        # meter = MeterPoint()
        # meter.name = 'BuildingElectricMeter'
        # meter.measurementType = MeasurementType.PowerReal
        # meter.measurementUnit = MeasurementUnit.kWh
        # self.meterPoints.append(meter)

        # Add weather forecast service
        weather_service = TemperatureForecastModel(self.config_path, self)
        self.informationServiceModels.append(weather_service)

        # # Add inelastive asset
        # inelastive_load = LocalAsset()
        # inelastive_load.name = 'InelasticBldgLoad'
        # inelastive_load.maximumPower = 0  # Remember that a load is a negative power [kW]
        # inelastive_load.minimumPower = -200
        #
        # # Add inelastive asset model
        # inelastive_load_model = LocalAssetModel()
        # inelastive_load_model.name = 'InelasticBuildingModel'
        # inelastive_load_model.defaultPower = -100  # [kW]
        # inelastive_load_model.defaultVertices = [Vertex(float("inf"), 0, -100, True)]
        #
        # # Cross-reference asset & asset model
        # inelastive_load_model.object = inelastive_load
        # inelastive_load.model = inelastive_load_model

        # Add elastive asset
        elastive_load = LocalAsset()
        elastive_load.name = 'TccLoad'
        elastive_load.maximumPower = 0  # Remember that a load is a negative power [kW]
        elastive_load.minimumPower = -self.max_deliver_capacity

        # Add inelastive asset model
        # self.elastive_load_model = LocalAssetModel()
        self.elastive_load_model = TccModel()
        self.elastive_load_model.name = 'TccModel'
        self.elastive_load_model.defaultPower = -0.5*self.max_deliver_capacity  # [kW]
        self.elastive_load_model.defaultVertices = [Vertex(0.055, 0, -self.elastive_load_model.defaultPower, True),
                                                    Vertex(0.06, 0, -self.elastive_load_model.defaultPower/2, True)]

        # Cross-reference asset & asset model
        self.elastive_load_model.object = elastive_load
        elastive_load.model = self.elastive_load_model

        # Add inelastive and elastive loads as building' assets
        self.localAssets.extend([elastive_load])

        # Add Market
        market = Market()
        market.name = 'dayAhead'
        market.commitment = False
        market.converged = False
        market.defaultPrice = 0.0428  # [$/kWh]
        market.dualityGapThreshold = self.duality_gap_threshold  # [0.02 = 2#]
        market.initialMarketState = MarketState.Inactive
        market.marketOrder = 1  # This is first and only market
        market.intervalsToClear = 1  # Only one interval at a time
        market.futureHorizon = timedelta(hours=24)  # Projects 24 hourly future intervals
        market.intervalDuration = timedelta(hours=1)  # [h] Intervals are 1 h long
        market.marketClearingInterval = timedelta(hours=1)  # [h]
        market.marketClearingTime = Timer.get_cur_time().replace(hour=0,
                                                                 minute=0,
                                                                 second=0,
                                                                 microsecond=0)  # Aligns with top of hour
        market.nextMarketClearingTime = market.marketClearingTime + timedelta(hours=1)
        self.markets.append(market)

        # Campus object
        campus = Neighbor()
        campus.name = 'PNNL_Campus'
        campus.description = 'PNNL_Campus'
        campus.maximumPower = self.max_deliver_capacity
        campus.minimumPower = 0.  # [avg.kW]
        campus.lossFactor = self.campus_loss_factor

        # Campus model
        campus_model = NeighborModel()
        campus_model.name = 'PNNL_Campus_Model'
        campus_model.location = self.name
        campus_model.defaultVertices = [Vertex(0.045, 25, 0, True), Vertex(0.048, 0, self.max_deliver_capacity, True)]
        campus_model.demand_threshold_coef = self.demand_threshold_coef
        # campus_model.demandThreshold = self.demand_threshold_coef * self.monthly_peak_power
        campus_model.demandThreshold = self.monthly_peak_power
        campus_model.transactive = True
        campus_model.inject(self, system_loss_topic=self.system_loss_topic)

        # Avg building meter
        building_meter = MeterPoint()
        building_meter.name = self.name + ' ElectricMeter'
        building_meter.measurementType = MeasurementType.AverageDemandkW
        building_meter.measurementUnit = MeasurementUnit.kWh
        campus_model.meterPoints.append(building_meter)

        # Cross-reference object & model
        campus_model.object = campus
        campus.model = campus_model
        self.campus = campus

        # Add campus as building's neighbor
        self.neighbors.append(campus)
Пример #2
0
    def init_objects(self):
        # Add meter
        meter = MeterPoint()
        meter.measurementType = MeasurementType.PowerReal
        meter.name = 'CampusElectricityMeter'
        meter.measurementUnit = MeasurementUnit.kWh
        self.meterPoints.append(meter)

        # Add weather forecast service
        weather_service = TemperatureForecastModel(self.config_path, self)
        self.informationServiceModels.append(weather_service)

        # Add inelastive asset
        inelastive_load = LocalAsset()
        inelastive_load.name = 'InelasticBuildings'  # Campus buildings that are not responsive
        inelastive_load.maximumPower = 0  # Remember that a load is a negative power [kW]
        inelastive_load.minimumPower = -2 * 8200  # Assume twice the average PNNL load [kW]

        # Add inelastive asset model
        inelastive_load_model = OpenLoopPnnlLoadPredictor(weather_service)
        inelastive_load_model.name = 'InelasticBuildingsModel'
        inelastive_load_model.engagementCost = [
            0, 0, 0
        ]  # Transition costs irrelevant
        inelastive_load_model.defaultPower = -6000  # [kW]
        inelastive_load_model.defaultVertices = [Vertex(0, 0, -6000.0, 1)]

        # Cross-reference asset & asset model
        inelastive_load_model.object = inelastive_load
        inelastive_load.model = inelastive_load_model

        # Add solar PV asset
        solar_pv = SolarPvResource()
        solar_pv.maximumPower = self.PV_max_kW  # [avg.kW]
        solar_pv.minimumPower = 0.0  # [avg.kW]
        solar_pv.name = 'SolarPv'
        solar_pv.description = '120 kW solar PV site on the campus'

        # Add solar PV asset model
        solar_pv_model = SolarPvResourceModel()
        solar_pv_model.cloudFactor = 1.0  # dimensionless
        solar_pv_model.engagementCost = [0, 0, 0]
        solar_pv_model.name = 'SolarPvModel'
        solar_pv_model.defaultPower = 0.0  # [avg.kW]
        solar_pv_model.defaultVertices = [Vertex(0, 0, 30.0, True)]
        solar_pv_model.costParameters = [0, 0, 0]
        solar_pv_model.inject(self, power_topic=self.solar_topic)

        # Cross-reference asset & asset model
        solar_pv.model = solar_pv_model
        solar_pv_model.object = solar_pv

        # Add inelastive and solar_pv as campus' assets
        self.localAssets.extend([inelastive_load, solar_pv])

        # Add Market
        market = Market()
        market.name = 'dayAhead'
        market.commitment = False
        market.converged = False
        market.defaultPrice = 0.04  # [$/kWh]
        market.dualityGapThreshold = self.duality_gap_threshold  # [0.02 = 2#]
        market.initialMarketState = MarketState.Inactive
        market.marketOrder = 1  # This is first and only market
        market.intervalsToClear = 1  # Only one interval at a time
        market.futureHorizon = timedelta(
            hours=24)  # Projects 24 hourly future intervals
        market.intervalDuration = timedelta(
            hours=1)  # [h] Intervals are 1 h long
        market.marketClearingInterval = timedelta(hours=1)  # [h]
        market.marketClearingTime = Timer.get_cur_time().replace(
            hour=0, minute=0, second=0,
            microsecond=0)  # Aligns with top of hour
        market.nextMarketClearingTime = market.marketClearingTime + timedelta(
            hours=1)
        self.markets.append(market)

        # City object
        city = Neighbor()
        city.name = 'CoR'
        city.description = 'City of Richland (COR) electricity supplier node'
        city.maximumPower = 20000  # Remember loads have negative power [avg.kW]
        city.minimumPower = 0  # [avg.kW]
        city.lossFactor = self.city_loss_factor

        # City model
        city_model = NeighborModel()
        city_model.name = 'CoR_Model'
        city_model.location = self.name
        city_model.transactive = True
        city_model.defaultPower = 10000  # [avg.kW]
        city_model.defaultVertices = [
            Vertex(0.046, 160, 0, True),
            Vertex(0.048,
                   160 + city.maximumPower * (0.046 + 0.5 * (0.048 - 0.046)),
                   city.maximumPower, True)
        ]
        city_model.costParameters = [0, 0, 0]
        city_model.demand_threshold_coef = self.demand_threshold_coef
        city_model.demandThreshold = self.monthly_peak_power
        city_model.inject(self,
                          system_loss_topic=self.system_loss_topic,
                          dc_threshold_topic=self.dc_threshold_topic)

        # Cross-reference object & model
        city_model.object = city
        city.model = city_model
        self.city = city

        # Add city as campus' neighbor
        self.neighbors.append(city)

        # Add buildings
        for bldg_name in self.building_names:
            bldg_neighbor = self.make_bldg_neighbor(bldg_name)
            self.neighbors.append(bldg_neighbor)