Пример #1
0
def main(cfg):
    logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')

    if cfg.model.pretrained_model is None and cfg.model.nemo_model is None:
        raise ValueError(
            "Either set `cfg.model.nemo_model` or `cfg.model.pretrained_model`"
        )
    if cfg.model.pretrained_model is not None and cfg.model.nemo_model is not None:
        raise ValueError(
            "Cannot set `cfg.model.nemo_model` and `cfg.model.pretrained_model`. Select one only."
        )

    trainer = pl.Trainer(**cfg.trainer)
    exp_manager(trainer, cfg.get("exp_manager", None))

    if cfg.model.pretrained_model is not None:
        model_cfg = ASRModel.from_pretrained(cfg.model.pretrained_model,
                                             return_config=True)
        update_encoder_config_to_support_adapter(model_cfg)
        model = ASRModel.from_pretrained(cfg.model.pretrained_model,
                                         override_config_path=model_cfg,
                                         trainer=trainer)

    else:
        model_cfg = ASRModel.restore_from(cfg.model.nemo_model,
                                          return_config=True)
        update_encoder_config_to_support_adapter(model_cfg)
        model = ASRModel.restore_from(cfg.model.nemo_model,
                                      override_config_path=model_cfg,
                                      trainer=trainer)

    # Setup model for finetuning (train and validation only)
    cfg.model.test_ds = update_model_cfg(model.cfg.test_ds, cfg.model.test_ds)

    # Call the dataloaders and optimizer + scheduler
    model.setup_multiple_test_data(cfg.model.test_ds)

    # Setup adapters
    with open_dict(cfg.model.adapter):
        adapter_name = cfg.model.adapter.pop("adapter_name", None)

    # Disable all other adapters, enable just the current adapter.
    model.set_enabled_adapters(
        enabled=False)  # disable all adapters prior to training

    if adapter_name is not None:
        model.set_enabled_adapters(
            adapter_name,
            enabled=True)  # enable just one adapter by name if provided

    # First, Freeze all the weights of the model (not just encoder, everything)
    model.freeze()

    # Finally, train model
    trainer.test(model)
Пример #2
0
def main(cfg: ParallelAlignmentConfig):
    if cfg.model.endswith(".nemo"):
        logging.info("Attempting to initialize from .nemo file")
        model = ASRModel.restore_from(restore_path=cfg.model, map_location="cpu")
    elif cfg.model.endswith(".ckpt"):
        logging.info("Attempting to initialize from .ckpt file")
        model = ASRModel.load_from_checkpoint(checkpoint_path=cfg.model, map_location="cpu")
    else:
        logging.info(
            "Attempting to initialize from a pretrained model as the model name does not have the extension of .nemo or .ckpt"
        )
        model = ASRModel.from_pretrained(model_name=cfg.model, map_location="cpu")

    trainer = ptl.Trainer(**cfg.trainer)

    cfg.predict_ds.return_sample_id = True
    cfg.return_predictions = False
    cfg.use_cer = False
    cfg.predict_ds = match_train_config(predict_ds=cfg.predict_ds, train_ds=model._cfg.train_ds)
    data_loader = model._setup_dataloader_from_config(cfg.predict_ds)

    os.makedirs(cfg.output_path, exist_ok=True)
    # trainer.global_rank is not valid before predict() is called. Need this hack to find the correct global_rank.
    global_rank = trainer.node_rank * trainer.num_devices + int(os.environ.get("LOCAL_RANK", 0))
    output_file = os.path.join(cfg.output_path, f"predictions_{global_rank}.json")
    output_ctm_dir = os.path.join(cfg.output_path, "ctm")
    predictor_writer = ASRCTMPredictionWriter(
        dataset=data_loader.dataset,
        output_file=output_file,
        output_ctm_dir=output_ctm_dir,
        time_per_frame=cfg.model_stride * model._cfg.preprocessor['window_stride'],
    )
    trainer.callbacks.extend([predictor_writer])

    aligner_wrapper = AlignerWrapperModel(model=model, cfg=cfg.aligner_args)
    trainer.predict(model=aligner_wrapper, dataloaders=data_loader, return_predictions=cfg.return_predictions)
    samples_num = predictor_writer.close_output_file()

    logging.info(
        f"Prediction on rank {global_rank} is done for {samples_num} samples and results are stored in {output_file}."
    )

    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    samples_num = 0
    if is_global_rank_zero():
        output_file = os.path.join(cfg.output_path, f"predictions_all.json")
        logging.info(f"Prediction files are being aggregated in {output_file}.")
        with open(output_file, 'tw', encoding="utf-8") as outf:
            for rank in range(trainer.world_size):
                input_file = os.path.join(cfg.output_path, f"predictions_{rank}.json")
                with open(input_file, 'r', encoding="utf-8") as inpf:
                    lines = inpf.readlines()
                    samples_num += len(lines)
                    outf.writelines(lines)
        logging.info(
            f"Prediction is done for {samples_num} samples in total on all workers and results are aggregated in {output_file}."
        )
Пример #3
0
def main():
    parser = ArgumentParser()
    parser.add_argument(
        "--asr_model", type=str, default="QuartzNet15x5Base-En", required=False, help="Pass: '******'",
    )
    parser.add_argument("--dataset", type=str, required=True, help="path to evaluation data")
    parser.add_argument("--batch_size", type=int, default=4)
    parser.add_argument("--out_dir", type=str, required=True, help="Destination dir for output files")
    parser.add_argument("--sctk_dir", type=str, required=False, default="", help="Path to sctk root dir")
    parser.add_argument("--glm", type=str, required=False, default="", help="Path to glm file")
    args = parser.parse_args()
    torch.set_grad_enabled(False)

    if not os.path.exists(args.out_dir):
        os.makedirs(args.out_dir, exist_ok=True)

    use_sctk = os.path.exists(args.sctk_dir)

    if args.asr_model.endswith('.nemo'):
        logging.info(f"Using local ASR model from {args.asr_model}")
        asr_model = ASRModel.restore_from(restore_path=args.asr_model, map_location='cpu')
    else:
        logging.info(f"Using NGC cloud ASR model {args.asr_model}")
        asr_model = ASRModel.from_pretrained(model_name=args.asr_model, map_location='cpu')

    if can_gpu:
        asr_model = asr_model.cuda()

    asr_model.eval()

    manifest_data = read_manifest(args.dataset)

    references = [data['text'] for data in manifest_data]
    audio_filepaths = [data['audio_filepath'] for data in manifest_data]

    with autocast():
        hypotheses = asr_model.transcribe(audio_filepaths, batch_size=args.batch_size)

        # if transcriptions form a tuple (from RNNT), extract just "best" hypothesis
        if type(hypotheses) == tuple and len(hypotheses) == 2:
            hypotheses = hypotheses[0]

    info_list = get_utt_info(args.dataset)
    hypfile = os.path.join(args.out_dir, "hyp.trn")
    reffile = os.path.join(args.out_dir, "ref.trn")
    with open(hypfile, "w") as hyp_f, open(reffile, "w") as ref_f:
        for i in range(len(hypotheses)):
            utt_id = os.path.splitext(os.path.basename(info_list[i]['audio_filepath']))[0]
            # rfilter in sctk likes each transcript to have a space at the beginning
            hyp_f.write(" " + hypotheses[i] + " (" + utt_id + ")" + "\n")
            ref_f.write(" " + references[i] + " (" + utt_id + ")" + "\n")

    if use_sctk:
        score_with_sctk(args.sctk_dir, reffile, hypfile, args.out_dir, glm=args.glm)
Пример #4
0
    def test_constructor_pretrained(self):
        # Check to/from config_dict:
        cfg = ASRModel.from_pretrained('stt_en_citrinet_256',
                                       map_location='cpu',
                                       return_config=True)
        adapter_metadata = get_registered_adapter(cfg.encoder._target_)
        if adapter_metadata is not None:
            cfg.encoder._target_ = adapter_metadata.adapter_class_path
        model = ASRModel.from_pretrained('stt_en_citrinet_256',
                                         override_config_path=cfg)

        assert isinstance(model, AdapterModuleMixin)
        assert hasattr(model, 'encoder')
        assert isinstance(model.encoder, AdapterModuleMixin)

        model.add_adapter(
            'adapter_0',
            cfg=get_adapter_cfg(in_features=cfg.encoder.jasper[0].filters,
                                dim=5))
        assert model.is_adapter_available()

        model.freeze()
        model.unfreeze_enabled_adapters()
        assert model.num_weights < 1e5
Пример #5
0
def get_asr_model(asr_model):
    """
    Returns ASR Model

    Args:
        asr_model: NeMo ASR model
    """
    if os.path.exists(args.model):
        asr_model = ASRModel.restore_from(asr_model)
    elif args.model in ASRModel.get_available_model_names():
        asr_model = ASRModel.from_pretrained(asr_model)
    else:
        raise ValueError(
            f'Provide path to the pretrained checkpoint or choose from {ASRModel.get_available_model_names()}'
        )
    return asr_model
Пример #6
0
def _asr_on_filepaths(
    audio_filepaths, audio_dir, pretrained_model, asr_batch_size, asr_ckpt_path,
    device, asr_model, logprobs, **kw
    ):
    # Load acustic model
    if asr_model is None:
        if asr_ckpt_path:
            warnings.warn("Models loaded from a .ckpt run on CPU")
            # TODO: Infer this kind of model in GPU
            asr_model = EncDecCTCModel.load_from_checkpoint(
                checkpoint_path=asr_ckpt_path,
                map_location=device
            )
        else:
            asr_model = ASRModel.from_pretrained(
                model_name=pretrained_model,
                map_location=device
            )
        trainer = pl.Trainer(gpus=int(device != "cpu"))
        asr_model.set_trainer(trainer)
        asr_model = asr_model.eval()

    # Transcribe
    if audio_dir:
        full_filepaths = [os.path.join(audio_dir, p) for p in audio_filepaths]
    else:
        full_filepaths = audio_filepaths
    @contextlib.contextmanager
    def autocast():
        yield
    with autocast():
        with torch.no_grad():
            preds = asr_model.transcribe(
                full_filepaths,
                batch_size=asr_batch_size,
                logprobs=logprobs
            )
    filepath_to_pred = {}
    for filepath, pred in zip(audio_filepaths, preds):
        filepath_to_pred[filepath] = pred
    return filepath_to_pred, asr_model
Пример #7
0
def main(cfg: TranscriptionConfig):
    logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')

    if cfg.model_path is None and cfg.pretrained_name is None:
        raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None !")

    # setup gpu
    if cfg.cuda is None:
        cfg.cuda = torch.cuda.is_available()

    if type(cfg.cuda) == int:
        device_id = int(cfg.cuda)
    else:
        device_id = 0

    device = torch.device(f'cuda:{device_id}' if cfg.cuda else 'cpu')

    # setup model
    if cfg.model_path is not None:
        # restore model from .nemo file path
        model_cfg = ASRModel.restore_from(restore_path=cfg.model_path, return_config=True)
        classpath = model_cfg.target  # original class path
        imported_class = model_utils.import_class_by_path(classpath)  # type: ASRModel
        logging.info(f"Restoring model : {imported_class.__name__}")

        asr_model = imported_class.restore_from(restore_path=cfg.model_path, map_location=device)  # type: ASRModel
    else:
        # restore model by name
        asr_model = ASRModel.from_pretrained(model_name=cfg.pretrained_name, map_location=device)  # type: ASRModel

    trainer = pl.Trainer(gpus=int(cfg.cuda))
    asr_model.set_trainer(trainer)
    asr_model = asr_model.eval()

    # Setup decoding strategy
    if hasattr(asr_model, 'change_decoding_strategy'):
        asr_model.change_decoding_strategy(cfg.rnnt_decoding)

    # load paths to audio
    filepaths = list(glob.glob(os.path.join(cfg.audio_dir, f"*.{cfg.audio_type}")))
    logging.info(f"\nTranscribing {len(filepaths)} files...\n")

    # setup AMP (optional)
    if cfg.amp and torch.cuda.is_available() and hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
        logging.info("AMP enabled!\n")
        autocast = torch.cuda.amp.autocast
    else:

        @contextlib.contextmanager
        def autocast():
            yield

    # transcribe audio
    with autocast():
        with torch.no_grad():
            transcriptions = asr_model.transcribe(filepaths, batch_size=cfg.batch_size)
    logging.info(f"Finished transcribing {len(filepaths)} files !")

    logging.info(f"Writing transcriptions into file: {cfg.output_filename}")
    with open(cfg.output_filename, 'w', encoding='utf-8') as f:
        for line in transcriptions:
            f.write(f"{line}\n")

    logging.info("Finished writing predictions !")
Пример #8
0
def main(cfg: TranscriptionConfig) -> TranscriptionConfig:
    logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')

    if cfg.model_path is None and cfg.pretrained_name is None:
        raise ValueError(
            "Both cfg.model_path and cfg.pretrained_name cannot be None!")
    if cfg.audio_dir is None and cfg.dataset_manifest is None:
        raise ValueError(
            "Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")

    # setup GPU
    if cfg.cuda is None:
        if torch.cuda.is_available():
            cfg.cuda = 0  # use 0th CUDA device
        else:
            cfg.cuda = -1  # use CPU

    device = torch.device(f'cuda:{cfg.cuda}' if cfg.cuda >= 0 else 'cpu')

    # setup model
    if cfg.model_path is not None:
        # restore model from .nemo file path
        model_cfg = ASRModel.restore_from(restore_path=cfg.model_path,
                                          return_config=True)
        classpath = model_cfg.target  # original class path
        imported_class = model_utils.import_class_by_path(
            classpath)  # type: ASRModel
        logging.info(f"Restoring model : {imported_class.__name__}")
        asr_model = imported_class.restore_from(
            restore_path=cfg.model_path, map_location=device)  # type: ASRModel
        model_name = os.path.splitext(os.path.basename(cfg.model_path))[0]
    else:
        # restore model by name
        asr_model = ASRModel.from_pretrained(
            model_name=cfg.pretrained_name,
            map_location=device)  # type: ASRModel
        model_name = cfg.pretrained_name

    trainer = pl.Trainer(gpus=[cfg.cuda] if cfg.cuda >= 0 else 0)
    asr_model.set_trainer(trainer)
    asr_model = asr_model.eval()

    # Setup decoding strategy
    if hasattr(asr_model, 'change_decoding_strategy'):
        asr_model.change_decoding_strategy(cfg.rnnt_decoding)

    # get audio filenames
    if cfg.audio_dir is not None:
        filepaths = list(
            glob.glob(os.path.join(cfg.audio_dir, f"*.{cfg.audio_type}")))
    else:
        # get filenames from manifest
        filepaths = []
        with open(cfg.dataset_manifest, 'r') as f:
            for line in f:
                item = json.loads(line)
                filepaths.append(item['audio_filepath'])
    logging.info(f"\nTranscribing {len(filepaths)} files...\n")

    # setup AMP (optional)
    if cfg.amp and torch.cuda.is_available() and hasattr(
            torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
        logging.info("AMP enabled!\n")
        autocast = torch.cuda.amp.autocast
    else:

        @contextlib.contextmanager
        def autocast():
            yield

    # Compute output filename
    if cfg.output_filename is None:
        # create default output filename
        if cfg.audio_dir is not None:
            cfg.output_filename = os.path.dirname(
                os.path.join(cfg.audio_dir, '.')) + '.json'
        else:
            cfg.output_filename = cfg.dataset_manifest.replace(
                '.json', f'_{model_name}.json')

    # if transcripts should not be overwritten, and already exists, skip re-transcription step and return
    if not cfg.overwrite_transcripts and os.path.exists(cfg.output_filename):
        logging.info(
            f"Previous transcripts found at {cfg.output_filename}, and flag `overwrite_transcripts`"
            f"is {cfg.overwrite_transcripts}. Returning without re-transcribing text."
        )

        return cfg

    # transcribe audio
    with autocast():
        with torch.no_grad():
            transcriptions = asr_model.transcribe(filepaths,
                                                  batch_size=cfg.batch_size)
    logging.info(f"Finished transcribing {len(filepaths)} files !")

    logging.info(f"Writing transcriptions into file: {cfg.output_filename}")

    # if transcriptions form a tuple (from RNNT), extract just "best" hypothesis
    if type(transcriptions) == tuple and len(transcriptions) == 2:
        transcriptions = transcriptions[0]

    # write audio transcriptions
    with open(cfg.output_filename, 'w', encoding='utf-8') as f:
        if cfg.audio_dir is not None:
            for idx, text in enumerate(transcriptions):
                item = {'audio_filepath': filepaths[idx], 'pred_text': text}
                f.write(json.dumps(item) + "\n")
        else:
            with open(cfg.dataset_manifest, 'r') as fr:
                for idx, line in enumerate(fr):
                    item = json.loads(line)
                    item['pred_text'] = transcriptions[idx]
                    f.write(json.dumps(item) + "\n")

    logging.info("Finished writing predictions !")
    return cfg
Пример #9
0
def main(cfg):
    logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')

    if cfg.model.pretrained_model is None and cfg.model.nemo_model is None:
        raise ValueError("Either set `cfg.model.nemo_model` or `cfg.model.pretrained_model`")
    if cfg.model.pretrained_model is not None and cfg.model.nemo_model is not None:
        raise ValueError("Cannot set both `cfg.model.nemo_model` and `cfg.model.pretrained_model`. Select one only.")

    trainer = pl.Trainer(**cfg.trainer)
    exp_log_dir = exp_manager(trainer, cfg.get("exp_manager", None))

    if cfg.model.pretrained_model is not None:
        model_cfg = ASRModel.from_pretrained(cfg.model.pretrained_model, return_config=True)
        update_model_config_to_support_adapter(model_cfg, cfg)
        model = ASRModel.from_pretrained(cfg.model.pretrained_model, override_config_path=model_cfg, trainer=trainer)

    else:
        model_cfg = ASRModel.restore_from(cfg.model.nemo_model, return_config=True)
        update_model_config_to_support_adapter(model_cfg, cfg)
        model = ASRModel.restore_from(cfg.model.nemo_model, override_config_path=model_cfg, trainer=trainer)

    # Setup model for finetuning (train and validation only)
    cfg.model.train_ds = update_model_cfg(model.cfg.train_ds, cfg.model.train_ds)
    cfg.model.validation_ds = update_model_cfg(model.cfg.validation_ds, cfg.model.validation_ds)

    # Call the dataloaders and optimizer + scheduler
    model.setup_training_data(cfg.model.train_ds)
    model.setup_multiple_validation_data(cfg.model.validation_ds)

    # Setup optimizer
    model.setup_optimization(cfg.model.optim)

    # Setup spec augmentation
    if 'spec_augment' in cfg.model:
        model.spec_augmentation = model.from_config_dict(cfg.model.spec_augment)
    else:
        model.spec_augmentation = None
        del model.cfg.spec_augment

    # Setup adapters
    with open_dict(cfg.model.adapter):
        # Extract the name of the adapter (must be give for training)
        adapter_name = cfg.model.adapter.pop("adapter_name")
        adapter_module_name = cfg.model.adapter.pop("adapter_module_name", None)
        adapter_state_dict_name = cfg.model.adapter.pop("adapter_state_dict_name", None)

        # augment adapter name with module name, if not provided by user
        if adapter_module_name is not None and ':' not in adapter_name:
            adapter_name = f'{adapter_module_name}:{adapter_name}'

        # Extract the global adapter config, if provided
        adapter_global_cfg = cfg.model.adapter.pop(model.adapter_global_cfg_key, None)
        if adapter_global_cfg is not None:
            add_global_adapter_cfg(model, adapter_global_cfg)

    model.add_adapter(adapter_name, cfg=cfg.model.adapter)
    assert model.is_adapter_available()

    # Disable all other adapters, enable just the current adapter.
    model.set_enabled_adapters(enabled=False)  # disable all adapters prior to training
    model.set_enabled_adapters(adapter_name, enabled=True)  # enable just one adapter by name

    # First, Freeze all the weights of the model (not just encoder, everything)
    model.freeze()
    # Activate dropout() and other modules that depend on train mode.
    model = model.train()
    # Then, Unfreeze just the adapter weights that were enabled above (no part of encoder/decoder/joint/etc)
    model.unfreeze_enabled_adapters()

    # Update model config prior to training
    model.cfg = model.cfg

    # Finally, train model
    trainer.fit(model)

    # Save the adapter state dict
    if adapter_state_dict_name is not None:
        state_path = exp_log_dir if exp_log_dir is not None else os.getcwd()
        ckpt_path = os.path.join(state_path, "checkpoints")
        if os.path.exists(ckpt_path):
            state_path = ckpt_path
        state_path = os.path.join(state_path, adapter_state_dict_name)

        # Save the adapter modules in a seperate file
        model.save_adapters(str(state_path))
Пример #10
0
def main(cfg: TranscriptionConfig) -> TranscriptionConfig:
    logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')

    if is_dataclass(cfg):
        cfg = OmegaConf.structured(cfg)

    if cfg.model_path is None and cfg.pretrained_name is None:
        raise ValueError(
            "Both cfg.model_path and cfg.pretrained_name cannot be None!")
    if cfg.audio_dir is None and cfg.dataset_manifest is None:
        raise ValueError(
            "Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")

    # setup GPU
    if cfg.cuda is None:
        if torch.cuda.is_available():
            device = [0]  # use 0th CUDA device
            accelerator = 'gpu'
        else:
            device = 1
            accelerator = 'cpu'
    else:
        device = [cfg.cuda]
        accelerator = 'gpu'

    map_location = torch.device('cuda:{}'.format(device[0]) if accelerator ==
                                'gpu' else 'cpu')

    # setup model
    if cfg.model_path is not None:
        # restore model from .nemo file path
        model_cfg = ASRModel.restore_from(restore_path=cfg.model_path,
                                          return_config=True)
        classpath = model_cfg.target  # original class path
        imported_class = model_utils.import_class_by_path(
            classpath)  # type: ASRModel
        logging.info(f"Restoring model : {imported_class.__name__}")
        asr_model = imported_class.restore_from(
            restore_path=cfg.model_path,
            map_location=map_location)  # type: ASRModel
        model_name = os.path.splitext(os.path.basename(cfg.model_path))[0]
    else:
        # restore model by name
        asr_model = ASRModel.from_pretrained(
            model_name=cfg.pretrained_name,
            map_location=map_location)  # type: ASRModel
        model_name = cfg.pretrained_name

    trainer = pl.Trainer(devices=device, accelerator=accelerator)
    asr_model.set_trainer(trainer)
    asr_model = asr_model.eval()
    partial_audio = False

    # Setup decoding strategy
    if hasattr(asr_model, 'change_decoding_strategy'):
        asr_model.change_decoding_strategy(cfg.rnnt_decoding)

    # get audio filenames
    if cfg.audio_dir is not None:
        filepaths = list(
            glob.glob(os.path.join(cfg.audio_dir, f"*.{cfg.audio_type}")))
    else:
        # get filenames from manifest
        filepaths = []
        if os.stat(cfg.dataset_manifest).st_size == 0:
            logging.error(
                f"The input dataset_manifest {cfg.dataset_manifest} is empty. Exiting!"
            )
            return None

        with open(cfg.dataset_manifest, 'r') as f:
            has_two_fields = []
            for line in f:
                item = json.loads(line)
                if "offset" in item and "duration" in item:
                    has_two_fields.append(True)
                else:
                    has_two_fields.append(False)
                filepaths.append(item['audio_filepath'])
        partial_audio = all(has_two_fields)

    logging.info(f"\nTranscribing {len(filepaths)} files...\n")

    # setup AMP (optional)
    if cfg.amp and torch.cuda.is_available() and hasattr(
            torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
        logging.info("AMP enabled!\n")
        autocast = torch.cuda.amp.autocast
    else:

        @contextlib.contextmanager
        def autocast():
            yield

    # Compute output filename
    if cfg.output_filename is None:
        # create default output filename
        if cfg.audio_dir is not None:
            cfg.output_filename = os.path.dirname(
                os.path.join(cfg.audio_dir, '.')) + '.json'
        else:
            cfg.output_filename = cfg.dataset_manifest.replace(
                '.json', f'_{model_name}.json')

    # if transcripts should not be overwritten, and already exists, skip re-transcription step and return
    if not cfg.overwrite_transcripts and os.path.exists(cfg.output_filename):
        logging.info(
            f"Previous transcripts found at {cfg.output_filename}, and flag `overwrite_transcripts`"
            f"is {cfg.overwrite_transcripts}. Returning without re-transcribing text."
        )

        return cfg

    # transcribe audio
    with autocast():
        with torch.no_grad():
            if partial_audio:
                if isinstance(asr_model, EncDecCTCModel):
                    transcriptions = transcribe_partial_audio(
                        asr_model=asr_model,
                        path2manifest=cfg.dataset_manifest,
                        batch_size=cfg.batch_size,
                        num_workers=cfg.num_workers,
                    )
                else:
                    logging.warning(
                        "RNNT models do not support transcribe partial audio for now. Transcribing full audio."
                    )
                    transcriptions = asr_model.transcribe(
                        paths2audio_files=filepaths,
                        batch_size=cfg.batch_size,
                        num_workers=cfg.num_workers,
                    )
            else:
                transcriptions = asr_model.transcribe(
                    paths2audio_files=filepaths,
                    batch_size=cfg.batch_size,
                    num_workers=cfg.num_workers,
                )

    logging.info(f"Finished transcribing {len(filepaths)} files !")

    logging.info(f"Writing transcriptions into file: {cfg.output_filename}")

    # if transcriptions form a tuple (from RNNT), extract just "best" hypothesis
    if type(transcriptions) == tuple and len(transcriptions) == 2:
        transcriptions = transcriptions[0]
    # write audio transcriptions
    with open(cfg.output_filename, 'w', encoding='utf-8') as f:
        if cfg.audio_dir is not None:
            for idx, text in enumerate(transcriptions):
                item = {'audio_filepath': filepaths[idx], 'pred_text': text}
                f.write(json.dumps(item) + "\n")
        else:
            with open(cfg.dataset_manifest, 'r') as fr:
                for idx, line in enumerate(fr):
                    item = json.loads(line)
                    item['pred_text'] = transcriptions[idx]
                    f.write(json.dumps(item) + "\n")

    logging.info("Finished writing predictions !")
    return cfg
Пример #11
0
def main(cfg):
    logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')

    if cfg.model.pretrained_model is None and cfg.model.nemo_model is None:
        raise ValueError(
            "Either set `cfg.model.nemo_model` or `cfg.model.pretrained_model`"
        )
    if cfg.model.pretrained_model is not None and cfg.model.nemo_model is not None:
        raise ValueError(
            "Cannot set `cfg.model.nemo_model` and `cfg.model.pretrained_model`. Select one only."
        )

    trainer = pl.Trainer(**cfg.trainer)
    exp_manager(trainer, cfg.get("exp_manager", None))

    if cfg.model.pretrained_model is not None:
        model_cfg = ASRModel.from_pretrained(cfg.model.pretrained_model,
                                             return_config=True)
        update_encoder_config_to_support_adapter(model_cfg)
        model = ASRModel.from_pretrained(cfg.model.pretrained_model,
                                         override_config_path=model_cfg,
                                         trainer=trainer)

    else:
        model_cfg = ASRModel.restore_from(cfg.model.nemo_model,
                                          return_config=True)
        update_encoder_config_to_support_adapter(model_cfg)
        model = ASRModel.restore_from(cfg.model.nemo_model,
                                      override_config_path=model_cfg,
                                      trainer=trainer)

    # Setup model for finetuning (train and validation only)
    cfg.model.train_ds = update_model_cfg(model.cfg.train_ds,
                                          cfg.model.train_ds)
    cfg.model.validation_ds = update_model_cfg(model.cfg.validation_ds,
                                               cfg.model.validation_ds)

    # Call the dataloaders and optimizer + scheduler
    model.setup_training_data(cfg.model.train_ds)
    model.setup_multiple_validation_data(cfg.model.validation_ds)

    # Setup optimizer
    cfg.model.optim = update_model_cfg(model.cfg.optim, cfg.model.optim)
    model.setup_optimization(cfg.model.optim)

    # Setup adapters
    with open_dict(cfg.model.adapter):
        # Extract the name of the adapter (must be give for training)
        adapter_name = cfg.model.adapter.pop("adapter_name")

        # Extract the global adapter config, if provided
        adapter_global_cfg = cfg.model.adapter.pop(
            model.adapter_global_cfg_key, None)
        if adapter_global_cfg is not None:
            add_global_adapter_cfg(model, adapter_global_cfg)

    model.add_adapter(adapter_name, cfg=cfg.model.adapter)
    assert model.is_adapter_available()

    # Disable all other adapters, enable just the current adapter.
    model.set_enabled_adapters(
        enabled=False)  # disable all adapters prior to training
    model.set_enabled_adapters(adapter_name,
                               enabled=True)  # enable just one adapter by name

    # First, Freeze all the weights of the model (not just encoder, everything)
    model.freeze()
    # Activate dropout() and other modules that depend on train mode.
    model = model.train()
    # Then, Unfreeze just the adapter weights that were enabled above (no part of encoder/decoder/joint/etc)
    model.unfreeze_enabled_adapters()

    # Finally, train model
    trainer.fit(model)
Пример #12
0
def main(cfg: TranscriptionConfig):
    logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')

    if cfg.model_path is None and cfg.pretrained_name is None:
        raise ValueError(
            "Both cfg.model_path and cfg.pretrained_name cannot be None!")
    if cfg.audio_dir is None and cfg.dataset_manifest is None:
        raise ValueError(
            "Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")

    # setup GPU
    if cfg.cuda is None:
        cfg.cuda = torch.cuda.is_available()

    if type(cfg.cuda) == int:
        device_id = int(cfg.cuda)
    else:
        device_id = 0

    device = torch.device(f'cuda:{device_id}' if cfg.cuda else 'cpu')

    # setup model
    if cfg.model_path is not None:
        # restore model from .nemo file path
        model_cfg = ASRModel.restore_from(restore_path=cfg.model_path,
                                          return_config=True)
        classpath = model_cfg.target  # original class path
        imported_class = model_utils.import_class_by_path(
            classpath)  # type: ASRModel
        logging.info(f"Restoring model : {imported_class.__name__}")
        asr_model = imported_class.restore_from(
            restore_path=cfg.model_path, map_location=device)  # type: ASRModel
        model_name = os.path.splitext(os.path.basename(cfg.model_path))[0]
    else:
        # restore model by name
        asr_model = ASRModel.from_pretrained(
            model_name=cfg.pretrained_name,
            map_location=device)  # type: ASRModel
        model_name = cfg.pretrained_name

    trainer = pl.Trainer(gpus=int(cfg.cuda))
    asr_model.set_trainer(trainer)
    asr_model = asr_model.eval()

    # Setup decoding strategy
    if hasattr(asr_model, 'change_decoding_strategy'):
        asr_model.change_decoding_strategy(cfg.rnnt_decoding)

    # get audio filenames
    if cfg.audio_dir is not None:
        filepaths = list(
            glob.glob(os.path.join(cfg.audio_dir, f"*.{cfg.audio_type}")))
    else:
        # get filenames from manifest
        filepaths = []
        with open(cfg.dataset_manifest, 'r') as f:
            for line in f:
                item = json.loads(line)
                filepaths.append(item['audio_filepath'])
    logging.info(f"\nTranscribing {len(filepaths)} files...\n")

    # setup AMP (optional)
    if cfg.amp and torch.cuda.is_available() and hasattr(
            torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
        logging.info("AMP enabled!\n")
        autocast = torch.cuda.amp.autocast
    else:

        @contextlib.contextmanager
        def autocast():
            yield

    # transcribe audio
    with autocast():
        with torch.no_grad():
            transcriptions = asr_model.transcribe(filepaths,
                                                  batch_size=cfg.batch_size)
    logging.info(f"Finished transcribing {len(filepaths)} files !")

    if cfg.output_filename is None:
        # create default output filename
        if cfg.audio_dir is not None:
            cfg.output_filename = os.path.dirname(
                os.path.join(cfg.audio_dir, '.')) + '.json'
        else:
            cfg.output_filename = cfg.dataset_manifest.replace(
                '.json', f'_{model_name}.json')

    logging.info(f"Writing transcriptions into file: {cfg.output_filename}")

    with open(cfg.output_filename, 'w', encoding='utf-8') as f:
        if cfg.audio_dir is not None:
            for idx, text in enumerate(transcriptions):
                item = {'audio_filepath': filepaths[idx], 'pred_text': text}
                f.write(json.dumps(item) + "\n")
        else:
            with open(cfg.dataset_manifest, 'r') as fr:
                for idx, line in enumerate(fr):
                    item = json.loads(line)
                    item['pred_text'] = transcriptions[idx]
                    f.write(json.dumps(item) + "\n")

    logging.info("Finished writing predictions !")
Пример #13
0
def main(cfg: ParallelTranscriptionConfig):
    if cfg.model.endswith(".nemo"):
        logging.info("Attempting to initialize from .nemo file")
        model = ASRModel.restore_from(restore_path=cfg.model,
                                      map_location="cpu")
    elif cfg.model.endswith(".ckpt"):
        logging.info("Attempting to initialize from .ckpt file")
        model = ASRModel.load_from_checkpoint(checkpoint_path=cfg.model,
                                              map_location="cpu")
    else:
        logging.info(
            "Attempting to initialize from a pretrained model as the model name does not have the extension of .nemo or .ckpt"
        )
        model = ASRModel.from_pretrained(model_name=cfg.model,
                                         map_location="cpu")

    trainer = ptl.Trainer(**cfg.trainer)

    cfg.predict_ds.return_sample_id = True
    cfg.predict_ds = match_train_config(predict_ds=cfg.predict_ds,
                                        train_ds=model.cfg.train_ds)
    data_loader = model._setup_dataloader_from_config(cfg.predict_ds)

    os.makedirs(cfg.output_path, exist_ok=True)
    # trainer.global_rank is not valid before predict() is called. Need this hack to find the correct global_rank.
    global_rank = trainer.node_rank * trainer.num_gpus + int(
        os.environ.get("LOCAL_RANK", 0))
    output_file = os.path.join(cfg.output_path,
                               f"predictions_{global_rank}.json")
    predictor_writer = ASRPredictionWriter(dataset=data_loader.dataset,
                                           output_file=output_file)
    trainer.callbacks.extend([predictor_writer])

    predictions = trainer.predict(model=model,
                                  dataloaders=data_loader,
                                  return_predictions=cfg.return_predictions)
    if predictions is not None:
        predictions = list(itertools.chain.from_iterable(predictions))
    samples_num = predictor_writer.close_output_file()

    logging.info(
        f"Prediction on rank {global_rank} is done for {samples_num} samples and results are stored in {output_file}."
    )

    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    samples_num = 0
    pred_text_list = []
    text_list = []
    if is_global_rank_zero():
        output_file = os.path.join(cfg.output_path, f"predictions_all.json")
        logging.info(
            f"Prediction files are being aggregated in {output_file}.")
        with open(output_file, 'w') as outf:
            for rank in range(trainer.world_size):
                input_file = os.path.join(cfg.output_path,
                                          f"predictions_{rank}.json")
                with open(input_file, 'r') as inpf:
                    lines = inpf.readlines()
                    for line in lines:
                        item = json.loads(line)
                        pred_text_list.append(item["pred_text"])
                        text_list.append(item["text"])
                        outf.write(json.dumps(item) + "\n")
                        samples_num += 1
        wer_cer = word_error_rate(hypotheses=pred_text_list,
                                  references=text_list,
                                  use_cer=cfg.use_cer)
        logging.info(
            f"Prediction is done for {samples_num} samples in total on all workers and results are aggregated in {output_file}."
        )
        logging.info("{} for all predictions is {:.4f}.".format(
            "CER" if cfg.use_cer else "WER", wer_cer))
Пример #14
0
            raise ValueError(
                f"ASR model must be provided to extract vocabulary for text processing"
            )
        elif os.path.exists(args.model):
            model_cfg = ASRModel.restore_from(restore_path=args.model,
                                              return_config=True)
            classpath = model_cfg.target  # original class path
            imported_class = model_utils.import_class_by_path(
                classpath)  # type: ASRModel
            print(f"Restoring model : {imported_class.__name__}")
            asr_model = imported_class.restore_from(
                restore_path=args.model)  # type: ASRModel
            model_name = os.path.splitext(os.path.basename(args.model))[0]
        else:
            # restore model by name
            asr_model = ASRModel.from_pretrained(
                model_name=args.model)  # type: ASRModel
            model_name = args.model

        vocabulary = asr_model.cfg.decoder.vocabulary

        if os.path.isdir(args.in_text):
            text_files = Path(args.in_text).glob(("*.txt"))
        else:
            text_files.append(Path(args.in_text))
        for text in text_files:
            base_name = os.path.basename(text)[:-4]
            out_text_file = os.path.join(args.output_dir, base_name + ".txt")

            split_text(
                text,
                out_text_file,