Пример #1
0
        args.data_dir,
        args.vocab_size,
        args.sample_size,
        special_tokens,
        'train.txt',
    )
    if args.tokenizer == "sentence-piece":
        nemo.logging.info("To use SentencePieceTokenizer.")
        tokenizer = nemo_nlp.SentencePieceTokenizer(
            model_path=data_desc.tokenizer_model)
        tokenizer.add_special_tokens(special_tokens)
    elif args.tokenizer == "nemo-bert":
        nemo.logging.info("To use NemoBertTokenizer.")
        vocab_file = os.path.join(args.data_dir, 'vocab.txt')
        # To train on a Chinese dataset, use NemoBertTokenizer
        tokenizer = nemo_nlp.NemoBertTokenizer(vocab_file=vocab_file)
    else:
        raise ValueError("Please add your tokenizer "
                         "or use sentence-piece or nemo-bert.")
    args.vocab_size = tokenizer.vocab_size

print(vars(args))
bert_model = nemo_nlp.huggingface.BERT(
    vocab_size=args.vocab_size,
    num_hidden_layers=args.num_hidden_layers,
    hidden_size=args.hidden_size,
    num_attention_heads=args.num_attention_heads,
    intermediate_size=args.intermediate_size,
    max_position_embeddings=args.max_seq_length,
    hidden_act=args.hidden_act,
)
Пример #2
0
    def test_squad_v1(self):
        version_2_with_negative = False
        pretrained_bert_model = 'bert-base-uncased'
        batch_size = 3
        data_dir = os.path.abspath(
            os.path.join(os.path.dirname(__file__), '../data/nlp/squad/v1.1'))
        max_query_length = 64
        max_seq_length = 384
        doc_stride = 128
        max_steps = 100
        lr_warmup_proportion = 0
        eval_step_freq = 50
        lr = 3e-6
        do_lower_case = True
        n_best_size = 5
        max_answer_length = 20
        null_score_diff_threshold = 0.0

        tokenizer = nemo_nlp.NemoBertTokenizer(pretrained_bert_model)
        neural_factory = nemo.core.NeuralModuleFactory(
            backend=nemo.core.Backend.PyTorch,
            local_rank=None,
            create_tb_writer=False,
        )
        model = nemo_nlp.huggingface.BERT(
            pretrained_model_name=pretrained_bert_model)
        hidden_size = model.local_parameters["hidden_size"]
        qa_head = nemo_nlp.TokenClassifier(
            hidden_size=hidden_size,
            num_classes=2,
            num_layers=1,
            log_softmax=False,
        )
        squad_loss = nemo_nlp.QuestionAnsweringLoss()

        data_layer = nemo_nlp.BertQuestionAnsweringDataLayer(
            mode='train',
            version_2_with_negative=version_2_with_negative,
            batch_size=batch_size,
            tokenizer=tokenizer,
            data_dir=data_dir,
            max_query_length=max_query_length,
            max_seq_length=max_seq_length,
            doc_stride=doc_stride,
        )

        (
            input_ids,
            input_type_ids,
            input_mask,
            start_positions,
            end_positions,
            _,
        ) = data_layer()

        hidden_states = model(
            input_ids=input_ids,
            token_type_ids=input_type_ids,
            attention_mask=input_mask,
        )

        qa_output = qa_head(hidden_states=hidden_states)
        loss, _, _ = squad_loss(
            logits=qa_output,
            start_positions=start_positions,
            end_positions=end_positions,
        )

        data_layer_eval = nemo_nlp.BertQuestionAnsweringDataLayer(
            mode='dev',
            version_2_with_negative=version_2_with_negative,
            batch_size=batch_size,
            tokenizer=tokenizer,
            data_dir=data_dir,
            max_query_length=max_query_length,
            max_seq_length=max_seq_length,
            doc_stride=doc_stride,
        )
        (
            input_ids_eval,
            input_type_ids_eval,
            input_mask_eval,
            start_positions_eval,
            end_positions_eval,
            unique_ids_eval,
        ) = data_layer_eval()

        hidden_states_eval = model(
            input_ids=input_ids_eval,
            token_type_ids=input_type_ids_eval,
            attention_mask=input_mask_eval,
        )

        qa_output_eval = qa_head(hidden_states=hidden_states_eval)
        _, start_logits_eval, end_logits_eval = squad_loss(
            logits=qa_output_eval,
            start_positions=start_positions_eval,
            end_positions=end_positions_eval,
        )
        eval_output = [start_logits_eval, end_logits_eval, unique_ids_eval]

        callback_train = nemo.core.SimpleLossLoggerCallback(
            tensors=[loss],
            print_func=lambda x: print("Loss: {:.3f}".format(x[0].item())),
            get_tb_values=lambda x: [["loss", x[0]]],
            step_freq=10,
            tb_writer=neural_factory.tb_writer,
        )

        callbacks_eval = nemo.core.EvaluatorCallback(
            eval_tensors=eval_output,
            user_iter_callback=lambda x, y: eval_iter_callback(x, y),
            user_epochs_done_callback=lambda x: eval_epochs_done_callback(
                x,
                eval_data_layer=data_layer_eval,
                do_lower_case=do_lower_case,
                n_best_size=n_best_size,
                max_answer_length=max_answer_length,
                version_2_with_negative=version_2_with_negative,
                null_score_diff_threshold=null_score_diff_threshold,
            ),
            tb_writer=neural_factory.tb_writer,
            eval_step=eval_step_freq,
        )

        lr_policy_fn = get_lr_policy(
            'WarmupAnnealing',
            total_steps=max_steps,
            warmup_ratio=lr_warmup_proportion,
        )

        neural_factory.train(
            tensors_to_optimize=[loss],
            callbacks=[callback_train, callbacks_eval],
            lr_policy=lr_policy_fn,
            optimizer='adam_w',
            optimization_params={
                "max_steps": max_steps,
                "lr": lr
            },
        )
Пример #3
0
Файл: squad.py Проект: vsl9/NeMo
        log_dir=args.work_dir,
        create_tb_writer=True,
        files_to_copy=[__file__],
        add_time_to_log_dir=True,
    )

    if args.tokenizer == "sentencepiece":
        try:
            tokenizer = nemo_nlp.SentencePieceTokenizer(
                model_path=args.tokenizer_model)
        except Exception:
            raise ValueError("Using --tokenizer=sentencepiece \
                        requires valid --tokenizer_model")
        tokenizer.add_special_tokens(["[CLS]", "[SEP]"])
    elif args.tokenizer == "nemobert":
        tokenizer = nemo_nlp.NemoBertTokenizer(args.pretrained_bert_model)
    else:
        raise ValueError(f"received unexpected tokenizer '{args.tokenizer}'")

    if args.bert_config is not None:
        with open(args.bert_config) as json_file:
            config = json.load(json_file)
        model = nemo_nlp.huggingface.BERT(**config)
    else:
        """ Use this if you're using a standard BERT model.
        To see the list of pretrained models, call:
        nemo_nlp.huggingface.BERT.list_pretrained_models()
        """
        model = nemo_nlp.huggingface.BERT(
            pretrained_model_name=args.pretrained_bert_model)