Пример #1
0
def main():
    parser = argparse.ArgumentParser(description='Jasper')
    parser.add_argument("--local_rank", default=None, type=int)
    parser.add_argument("--batch_size", default=32, type=int)
    parser.add_argument("--model_config", type=str, required=True)
    parser.add_argument("--eval_datasets", type=str, required=True)
    parser.add_argument("--load_dir", type=str, required=True)
    parser.add_argument("--vocab_file", type=str, required=True)
    parser.add_argument("--save_logprob", default=None, type=str)
    parser.add_argument("--lm_path", default=None, type=str)
    parser.add_argument("--beam_width", default=50, type=int)
    parser.add_argument("--alpha", default=2.0, type=float)
    parser.add_argument("--beta", default=1.0, type=float)
    parser.add_argument("--cutoff_prob", default=0.99, type=float)
    parser.add_argument("--cutoff_top_n", default=40, type=int)

    args = parser.parse_args()
    batch_size = args.batch_size
    load_dir = args.load_dir

    if args.local_rank is not None:
        if args.lm_path:
            raise NotImplementedError(
                "Beam search decoder with LM does not currently support "
                "evaluation on multi-gpu.")
        device = nemo.core.DeviceType.AllGpu
    else:
        device = nemo.core.DeviceType.GPU

    # Instantiate Neural Factory with supported backend
    neural_factory = nemo.core.NeuralModuleFactory(
        backend=nemo.core.Backend.PyTorch,
        local_rank=args.local_rank,
        optimization_level=nemo.core.Optimization.mxprO1,
        placement=device)
    logger = neural_factory.logger

    if args.local_rank is not None:
        logger.info('Doing ALL GPU')

    yaml = YAML(typ="safe")
    with open(args.model_config) as f:
        jasper_params = yaml.load(f)

    vocab = load_vocab(args.vocab_file)

    sample_rate = jasper_params['sample_rate']

    eval_datasets = args.eval_datasets

    eval_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
    eval_dl_params.update(jasper_params["AudioToTextDataLayer"]["eval"])
    eval_dl_params["normalize_transcripts"] = False
    del eval_dl_params["train"]
    del eval_dl_params["eval"]
    data_layer = nemo_asr.AudioToTextDataLayer(
        manifest_filepath=eval_datasets,
        sample_rate=sample_rate,
        labels=vocab,
        batch_size=batch_size,
        **eval_dl_params)

    n = len(data_layer)
    logger.info('Evaluating {0} examples'.format(n))

    data_preprocessor = nemo_asr.AudioPreprocessing(
        sample_rate=sample_rate,
        **jasper_params["AudioPreprocessing"])
    jasper_encoder = nemo_asr.JasperEncoder(
        feat_in=jasper_params["AudioPreprocessing"]["features"],
        **jasper_params["JasperEncoder"])
    jasper_decoder = nemo_asr.JasperDecoderForCTC(
        feat_in=jasper_params["JasperEncoder"]["jasper"][-1]["filters"],
        num_classes=len(vocab))
    greedy_decoder = nemo_asr.GreedyCTCDecoder()

    if args.lm_path:
        beam_width = args.beam_width
        alpha = args.alpha
        beta = args.beta
        cutoff_prob = args.cutoff_prob
        cutoff_top_n = args.cutoff_top_n
        beam_search_with_lm = nemo_asr.BeamSearchDecoderWithLM(
            vocab=vocab,
            beam_width=beam_width,
            alpha=alpha,
            beta=beta,
            cutoff_prob=cutoff_prob,
            cutoff_top_n=cutoff_top_n,
            lm_path=args.lm_path,
            num_cpus=max(os.cpu_count(), 1))

    logger.info('================================')
    logger.info(
        f"Number of parameters in encoder: {jasper_encoder.num_weights}")
    logger.info(
        f"Number of parameters in decoder: {jasper_decoder.num_weights}")
    logger.info(
        f"Total number of parameters in decoder: "
        f"{jasper_decoder.num_weights + jasper_encoder.num_weights}")
    logger.info('================================')

    audio_signal_e1, a_sig_length_e1, transcript_e1, transcript_len_e1 = \
        data_layer()
    processed_signal_e1, p_length_e1 = data_preprocessor(
        input_signal=audio_signal_e1,
        length=a_sig_length_e1)
    encoded_e1, encoded_len_e1 = jasper_encoder(
        audio_signal=processed_signal_e1,
        length=p_length_e1)
    log_probs_e1 = jasper_decoder(encoder_output=encoded_e1)
    predictions_e1 = greedy_decoder(log_probs=log_probs_e1)

    eval_tensors = [log_probs_e1, predictions_e1,
                    transcript_e1, transcript_len_e1, encoded_len_e1]

    if args.lm_path:
        beam_predictions_e1 = beam_search_with_lm(
            log_probs=log_probs_e1, log_probs_length=encoded_len_e1)
        eval_tensors.append(beam_predictions_e1)

    evaluated_tensors = neural_factory.infer(
        tensors=eval_tensors,
        checkpoint_dir=load_dir,
    )

    greedy_hypotheses = post_process_predictions(evaluated_tensors[1], vocab)
    references = post_process_transcripts(
        evaluated_tensors[2], evaluated_tensors[3], vocab)
    cer = word_error_rate(hypotheses=greedy_hypotheses,
                          references=references,
                          use_cer=True)
    logger.info("Greedy CER {:.2f}%".format(cer * 100))

    if args.lm_path:
        beam_hypotheses = []
        # Over mini-batch
        for i in evaluated_tensors[-1]:
            # Over samples
            for j in i:
                beam_hypotheses.append(j[0][1])

        cer = word_error_rate(
            hypotheses=beam_hypotheses, references=references, use_cer=True)
        logger.info("Beam CER {:.2f}".format(cer * 100))

    if args.save_logprob:
        # Convert logits to list of numpy arrays
        logprob = []
        for i, batch in enumerate(evaluated_tensors[0]):
            for j in range(batch.shape[0]):
                logprob.append(
                    batch[j][:evaluated_tensors[4][i][j], :].cpu().numpy())
        with open(args.save_logprob, 'wb') as f:
            pickle.dump(logprob, f, protocol=pickle.HIGHEST_PROTOCOL)
def main():
    parser = argparse.ArgumentParser(description='Jasper')
    parser.add_argument("--local_rank", default=None, type=int)
    parser.add_argument("--batch_size", default=32, type=int)
    parser.add_argument("--model_config", type=str, required=True)
    parser.add_argument("--eval_datasets", type=str, required=True)
    parser.add_argument("--load_dir", type=str, required=True)
    parser.add_argument("--save_logprob", default=None, type=str)
    parser.add_argument("--lm_path", default=None, type=str)
    parser.add_argument('--alpha',
                        default=2.,
                        type=float,
                        help='value of LM weight',
                        required=False)
    parser.add_argument(
        '--alpha_max',
        type=float,
        help='maximum value of LM weight (for a grid search in \'eval\' mode)',
        required=False)
    parser.add_argument('--alpha_step',
                        type=float,
                        help='step for LM weight\'s tuning in \'eval\' mode',
                        required=False,
                        default=0.1)
    parser.add_argument('--beta',
                        default=1.5,
                        type=float,
                        help='value of word count weight',
                        required=False)
    parser.add_argument(
        '--beta_max',
        type=float,
        help='maximum value of word count weight (for a grid search in \
          \'eval\' mode',
        required=False)
    parser.add_argument(
        '--beta_step',
        type=float,
        help='step for word count weight\'s tuning in \'eval\' mode',
        required=False,
        default=0.1)
    parser.add_argument("--beam_width", default=128, type=int)

    args = parser.parse_args()
    batch_size = args.batch_size
    load_dir = args.load_dir

    if args.local_rank is not None:
        if args.lm_path:
            raise NotImplementedError(
                "Beam search decoder with LM does not currently support "
                "evaluation on multi-gpu.")
        device = nemo.core.DeviceType.AllGpu
    else:
        device = nemo.core.DeviceType.GPU

    # Instantiate Neural Factory with supported backend
    neural_factory = nemo.core.NeuralModuleFactory(
        backend=nemo.core.Backend.PyTorch,
        local_rank=args.local_rank,
        optimization_level=nemo.core.Optimization.mxprO1,
        placement=device)
    logger = neural_factory.logger

    if args.local_rank is not None:
        logger.info('Doing ALL GPU')

    yaml = YAML(typ="safe")
    with open(args.model_config) as f:
        jasper_params = yaml.load(f)
    vocab = jasper_params['labels']
    sample_rate = jasper_params['sample_rate']

    eval_datasets = args.eval_datasets

    eval_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
    eval_dl_params.update(jasper_params["AudioToTextDataLayer"]["eval"])
    del eval_dl_params["train"]
    del eval_dl_params["eval"]
    data_layer = nemo_asr.AudioToTextDataLayer(manifest_filepath=eval_datasets,
                                               sample_rate=sample_rate,
                                               labels=vocab,
                                               batch_size=batch_size,
                                               **eval_dl_params)

    N = len(data_layer)
    logger.info('Evaluating {0} examples'.format(N))

    data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
        sample_rate=sample_rate,
        **jasper_params["AudioToMelSpectrogramPreprocessor"])
    jasper_encoder = nemo_asr.JasperEncoder(
        feat_in=jasper_params["AudioToMelSpectrogramPreprocessor"]["features"],
        **jasper_params["JasperEncoder"])
    jasper_decoder = nemo_asr.JasperDecoderForCTC(
        feat_in=jasper_params["JasperEncoder"]["jasper"][-1]["filters"],
        num_classes=len(vocab))
    greedy_decoder = nemo_asr.GreedyCTCDecoder()

    logger.info('================================')
    logger.info(
        f"Number of parameters in encoder: {jasper_encoder.num_weights}")
    logger.info(
        f"Number of parameters in decoder: {jasper_decoder.num_weights}")
    logger.info(f"Total number of parameters in decoder: "
                f"{jasper_decoder.num_weights + jasper_encoder.num_weights}")
    logger.info('================================')

    audio_signal_e1, a_sig_length_e1, transcript_e1, transcript_len_e1 =\
        data_layer()
    processed_signal_e1, p_length_e1 = data_preprocessor(
        input_signal=audio_signal_e1, length=a_sig_length_e1)
    encoded_e1, encoded_len_e1 = jasper_encoder(
        audio_signal=processed_signal_e1, length=p_length_e1)
    log_probs_e1 = jasper_decoder(encoder_output=encoded_e1)
    predictions_e1 = greedy_decoder(log_probs=log_probs_e1)

    eval_tensors = [
        log_probs_e1, predictions_e1, transcript_e1, transcript_len_e1,
        encoded_len_e1
    ]

    evaluated_tensors = neural_factory.infer(tensors=eval_tensors,
                                             checkpoint_dir=load_dir,
                                             cache=True)

    greedy_hypotheses = post_process_predictions(evaluated_tensors[1], vocab)
    references = post_process_transcripts(evaluated_tensors[2],
                                          evaluated_tensors[3], vocab)
    wer = word_error_rate(hypotheses=greedy_hypotheses, references=references)
    logger.info("Greedy WER {:.2f}%".format(wer * 100))

    if args.lm_path:
        if args.alpha_max is None:
            args.alpha_max = args.alpha
        # include alpha_max in tuning range
        args.alpha_max += args.alpha_step / 10.0

        if args.beta_max is None:
            args.beta_max = args.beta
        # include beta_max in tuning range
        args.beta_max += args.beta_step / 10.0

        beam_wers = []

        for alpha in np.arange(args.alpha, args.alpha_max, args.alpha_step):
            for beta in np.arange(args.beta, args.beta_max, args.beta_step):
                logger.info('================================')
                logger.info(f'Infering with (alpha, beta): ({alpha}, {beta})')
                beam_search_with_lm = nemo_asr.BeamSearchDecoderWithLM(
                    vocab=vocab,
                    beam_width=args.beam_width,
                    alpha=alpha,
                    beta=beta,
                    lm_path=args.lm_path,
                    num_cpus=max(os.cpu_count(), 1))
                beam_predictions_e1 = beam_search_with_lm(
                    log_probs=log_probs_e1, log_probs_length=encoded_len_e1)

                evaluated_tensors = neural_factory.infer(
                    tensors=[beam_predictions_e1],
                    use_cache=True,
                    verbose=False)

                beam_hypotheses = []
                # Over mini-batch
                for i in evaluated_tensors[-1]:
                    # Over samples
                    for j in i:
                        beam_hypotheses.append(j[0][1])

                wer = word_error_rate(hypotheses=beam_hypotheses,
                                      references=references)
                logger.info("Beam WER {:.2f}%".format(wer * 100))
                beam_wers.append(((alpha, beta), wer * 100))

        logger.info('Beam WER for (alpha, beta)')
        logger.info('================================')
        logger.info('\n' + '\n'.join([str(e) for e in beam_wers]))
        logger.info('================================')
        best_beam_wer = min(beam_wers, key=lambda x: x[1])
        logger.info('Best (alpha, beta): '
                    f'{best_beam_wer[0]}, '
                    f'WER: {best_beam_wer[1]:.2f}%')
Пример #3
0
def main():
    parser = argparse.ArgumentParser(parents=[nm_argparse.NemoArgParser()],
                                     description='AN4 ASR',
                                     conflict_handler='resolve')

    # Overwrite default args
    parser.add_argument("--train_dataset",
                        type=str,
                        help="training dataset path")
    parser.add_argument("--eval_datasets",
                        type=str,
                        nargs=1,
                        help="validation dataset path")

    # Create new args
    parser.add_argument("--lm", default="./an4-lm.3gram.binary", type=str)
    parser.add_argument("--test_after_training", action='store_true')
    parser.add_argument("--momentum", type=float)
    parser.add_argument("--beta1", default=0.95, type=float)
    parser.add_argument("--beta2", default=0.25, type=float)
    parser.set_defaults(
        model_config="./configs/jasper_an4.yaml",
        train_dataset="/home/mrjenkins/TestData/an4_dataset/an4_train.json",
        eval_datasets="/home/mrjenkins/TestData/an4_dataset/an4_val.json",
        work_dir="./tmp",
        checkpoint_dir="./tmp",
        optimizer="novograd",
        num_epochs=50,
        batch_size=32,
        eval_batch_size=16,
        lr=0.02,
        weight_decay=0.005,
        checkpoint_save_freq=1000,
        eval_freq=100,
        amp_opt_level="O1")

    args = parser.parse_args()
    betas = (args.beta1, args.beta2)

    wer_thr = 0.20
    beam_wer_thr = 0.15

    nf = nemo.core.NeuralModuleFactory(local_rank=args.local_rank,
                                       optimization_level=args.amp_opt_level,
                                       random_seed=0,
                                       log_dir=args.work_dir,
                                       checkpoint_dir=args.checkpoint_dir,
                                       create_tb_writer=True,
                                       cudnn_benchmark=args.cudnn_benchmark)
    tb_writer = nf.tb_writer
    checkpoint_dir = nf.checkpoint_dir
    args.checkpoint_dir = nf.checkpoint_dir

    # Load model definition
    yaml = YAML(typ="safe")
    with open(args.model_config) as f:
        jasper_params = yaml.load(f)

    vocab = jasper_params['labels']
    sample_rate = jasper_params['sample_rate']

    # build train and eval model
    train_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
    train_dl_params.update(jasper_params["AudioToTextDataLayer"]["train"])
    del train_dl_params["train"]
    del train_dl_params["eval"]

    data_layer = nemo_asr.AudioToTextDataLayer(
        manifest_filepath=args.train_dataset,
        sample_rate=sample_rate,
        labels=vocab,
        batch_size=args.batch_size,
        **train_dl_params)

    num_samples = len(data_layer)
    total_steps = int(num_samples * args.num_epochs / args.batch_size)
    print("Train samples=", num_samples, "num_steps=", total_steps)

    data_preprocessor = nemo_asr.AudioPreprocessing(
        sample_rate=sample_rate, **jasper_params["AudioPreprocessing"])

    # data_augmentation = nemo_asr.SpectrogramAugmentation(
    #     **jasper_params['SpectrogramAugmentation']
    # )

    eval_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
    eval_dl_params.update(jasper_params["AudioToTextDataLayer"]["eval"])
    del eval_dl_params["train"]
    del eval_dl_params["eval"]

    data_layer_eval = nemo_asr.AudioToTextDataLayer(
        manifest_filepath=args.eval_datasets,
        sample_rate=sample_rate,
        labels=vocab,
        batch_size=args.eval_batch_size,
        **eval_dl_params)

    num_samples = len(data_layer_eval)
    nf.logger.info(f"Eval samples={num_samples}")

    jasper_encoder = nemo_asr.JasperEncoder(
        feat_in=jasper_params["AudioPreprocessing"]["features"],
        **jasper_params["JasperEncoder"])

    jasper_decoder = nemo_asr.JasperDecoderForCTC(
        feat_in=jasper_params["JasperEncoder"]["jasper"][-1]["filters"],
        num_classes=len(vocab))

    ctc_loss = nemo_asr.CTCLossNM(num_classes=len(vocab))

    greedy_decoder = nemo_asr.GreedyCTCDecoder()

    # Training model
    audio, audio_len, transcript, transcript_len = data_layer()
    processed, processed_len = data_preprocessor(input_signal=audio,
                                                 length=audio_len)
    encoded, encoded_len = jasper_encoder(audio_signal=processed,
                                          length=processed_len)
    log_probs = jasper_decoder(encoder_output=encoded)
    predictions = greedy_decoder(log_probs=log_probs)
    loss = ctc_loss(log_probs=log_probs,
                    targets=transcript,
                    input_length=encoded_len,
                    target_length=transcript_len)

    # Evaluation model
    audio_e, audio_len_e, transcript_e, transcript_len_e = data_layer_eval()
    processed_e, processed_len_e = data_preprocessor(input_signal=audio_e,
                                                     length=audio_len_e)
    encoded_e, encoded_len_e = jasper_encoder(audio_signal=processed_e,
                                              length=processed_len_e)
    log_probs_e = jasper_decoder(encoder_output=encoded_e)
    predictions_e = greedy_decoder(log_probs=log_probs_e)
    loss_e = ctc_loss(log_probs=log_probs_e,
                      targets=transcript_e,
                      input_length=encoded_len_e,
                      target_length=transcript_len_e)
    nf.logger.info("Num of params in encoder: {0}".format(
        jasper_encoder.num_weights))

    # Callbacks to print info to console and Tensorboard
    train_callback = nemo.core.SimpleLossLoggerCallback(
        tensors=[loss, predictions, transcript, transcript_len],
        print_func=lambda x: monitor_asr_train_progress(x, labels=vocab),
        get_tb_values=lambda x: [["loss", x[0]]],
        tb_writer=tb_writer,
    )

    checkpointer_callback = nemo.core.CheckpointCallback(
        folder=checkpoint_dir, step_freq=args.checkpoint_save_freq)

    eval_tensors = [loss_e, predictions_e, transcript_e, transcript_len_e]
    eval_callback = nemo.core.EvaluatorCallback(
        eval_tensors=eval_tensors,
        user_iter_callback=lambda x, y: process_evaluation_batch(
            x, y, labels=vocab),
        user_epochs_done_callback=process_evaluation_epoch,
        eval_step=args.eval_freq,
        tb_writer=tb_writer)

    nf.train(tensors_to_optimize=[loss],
             callbacks=[train_callback, eval_callback, checkpointer_callback],
             optimizer=args.optimizer,
             lr_policy=CosineAnnealing(total_steps=total_steps),
             optimization_params={
                 "num_epochs": args.num_epochs,
                 "max_steps": args.max_steps,
                 "lr": args.lr,
                 "momentum": args.momentum,
                 "betas": betas,
                 "weight_decay": args.weight_decay,
                 "grad_norm_clip": None
             },
             batches_per_step=args.iter_per_step)

    if args.test_after_training:
        # Create BeamSearch NM
        beam_search_with_lm = nemo_asr.BeamSearchDecoderWithLM(
            vocab=vocab,
            beam_width=64,
            alpha=2.,
            beta=1.5,
            lm_path=args.lm,
            num_cpus=max(os.cpu_count(), 1))
        beam_predictions = beam_search_with_lm(log_probs=log_probs_e,
                                               log_probs_length=encoded_len_e)
        eval_tensors.append(beam_predictions)

        evaluated_tensors = nf.infer(eval_tensors)
        greedy_hypotheses = post_process_predictions(evaluated_tensors[1],
                                                     vocab)
        references = post_process_transcripts(evaluated_tensors[2],
                                              evaluated_tensors[3], vocab)
        wer = word_error_rate(hypotheses=greedy_hypotheses,
                              references=references)
        nf.logger.info("Greedy WER: {:.2f}".format(wer * 100))
        assert wer <= wer_thr, (
            "Final eval greedy WER {:.2f}% > than {:.2f}%".format(
                wer * 100, wer_thr * 100))

        beam_hypotheses = []
        # Over mini-batch
        for i in evaluated_tensors[-1]:
            # Over samples
            for j in i:
                beam_hypotheses.append(j[0][1])

        beam_wer = word_error_rate(hypotheses=beam_hypotheses,
                                   references=references)
        nf.logger.info("Beam WER {:.2f}%".format(beam_wer * 100))
        assert beam_wer <= beam_wer_thr, (
            "Final eval beam WER {:.2f}%  > than {:.2f}%".format(
                beam_wer * 100, beam_wer_thr * 100))
        assert beam_wer <= wer, ("Final eval beam WER > than the greedy WER.")

        # Reload model weights and train for extra 10 epochs
        checkpointer_callback = nemo.core.CheckpointCallback(
            folder=checkpoint_dir,
            step_freq=args.checkpoint_save_freq,
            force_load=True)

        nf.reset_trainer()
        nf.train(tensors_to_optimize=[loss],
                 callbacks=[train_callback, checkpointer_callback],
                 optimizer=args.optimizer,
                 optimization_params={
                     "num_epochs": args.num_epochs + 10,
                     "lr": args.lr,
                     "momentum": args.momentum,
                     "betas": betas,
                     "weight_decay": args.weight_decay,
                     "grad_norm_clip": None
                 },
                 reset=True)

        evaluated_tensors = nf.infer(eval_tensors[:-1])
        greedy_hypotheses = post_process_predictions(evaluated_tensors[1],
                                                     vocab)
        references = post_process_transcripts(evaluated_tensors[2],
                                              evaluated_tensors[3], vocab)
        wer_new = word_error_rate(hypotheses=greedy_hypotheses,
                                  references=references)
        nf.logger.info("New greedy WER: {:.2f}%".format(wer_new * 100))
        assert wer_new <= wer * 1.1, (
            f"Fine tuning: new WER {wer * 100:.2f}% > than the previous WER "
            f"{wer_new * 100:.2f}%")
Пример #4
0
def main():
    parser = argparse.ArgumentParser(parents=[nm_argparse.NemoArgParser()],
                                     description='AN4 ASR',
                                     conflict_handler='resolve')

    # Overwrite default args
    parser.add_argument("--train_dataset",
                        type=str,
                        help="training dataset path")
    parser.add_argument("--eval_datasets",
                        type=str,
                        nargs=1,
                        help="validation dataset path")

    # Create new args
    parser.add_argument("--lm", default="./an4-lm.3gram.binary", type=str)
    parser.add_argument("--test_after_training", action='store_true')
    parser.add_argument("--momentum", type=float)
    parser.add_argument("--beta1", default=0.95, type=float)
    parser.add_argument("--beta2", default=0.25, type=float)
    parser.set_defaults(
        model_config="./configs/jasper_an4.yaml",
        train_dataset="/home/mrjenkins/TestData/an4_dataset/an4_train.json",
        eval_datasets="/home/mrjenkins/TestData/an4_dataset/an4_val.json",
        work_dir="./tmp",
        optimizer="novograd",
        num_epochs=50,
        batch_size=48,
        eval_batch_size=64,
        lr=0.02,
        weight_decay=0.005,
        checkpoint_save_freq=1000,
        eval_freq=100,
        amp_opt_level="O1")

    args = parser.parse_args()
    betas = (args.beta1, args.beta2)

    wer_thr = 0.20
    beam_wer_thr = 0.15

    nf = nemo.core.NeuralModuleFactory(local_rank=args.local_rank,
                                       files_to_copy=[__file__],
                                       optimization_level=args.amp_opt_level,
                                       random_seed=0,
                                       log_dir=args.work_dir,
                                       create_tb_writer=True,
                                       cudnn_benchmark=args.cudnn_benchmark)
    tb_writer = nf.tb_writer
    checkpoint_dir = nf.checkpoint_dir

    # Load model definition
    yaml = YAML(typ="safe")
    with open(args.model_config) as f:
        jasper_params = yaml.load(f)

    (loss, eval_tensors, callbacks, total_steps, vocab, log_probs_e,
     encoded_len_e) = create_dags(jasper_params, args, nf)

    nf.train(
        tensors_to_optimize=[loss],
        callbacks=callbacks,
        optimizer=args.optimizer,
        lr_policy=CosineAnnealing(total_steps=total_steps,
                                  min_lr=args.lr / 100),
        optimization_params={
            "num_epochs": args.num_epochs,
            "max_steps": args.max_steps,
            "lr": args.lr,
            "momentum": args.momentum,
            "betas": betas,
            "weight_decay": args.weight_decay,
            "grad_norm_clip": None
        },
        batches_per_step=args.iter_per_step,
        amp_max_loss_scale=256.,
        # synced_batchnorm=(nf.global_rank is not None),
    )

    if args.test_after_training:
        nemo.logging.info("Testing greedy and beam search with LM WER.")
        # Create BeamSearch NM
        if nf.world_size > 1:
            nemo.logging.warning("Skipping beam search WER as it does not "
                                 "work if doing distributed training.")
        else:
            beam_search_with_lm = nemo_asr.BeamSearchDecoderWithLM(
                vocab=vocab,
                beam_width=64,
                alpha=2.,
                beta=1.5,
                lm_path=args.lm,
                num_cpus=max(os.cpu_count(), 1))
            beam_predictions = beam_search_with_lm(
                log_probs=log_probs_e, log_probs_length=encoded_len_e)
            eval_tensors.append(beam_predictions)

        evaluated_tensors = nf.infer(eval_tensors)
        if nf.global_rank in [0, None]:
            greedy_hypotheses = post_process_predictions(
                evaluated_tensors[1], vocab)
            references = post_process_transcripts(evaluated_tensors[2],
                                                  evaluated_tensors[3], vocab)
            wer = word_error_rate(hypotheses=greedy_hypotheses,
                                  references=references)
            nemo.logging.info("Greedy WER: {:.2f}%".format(wer * 100))
            if wer > wer_thr:
                nf.sync_all_processes(False)
                raise ValueError(f"Final eval greedy WER {wer*100:.2f}% > :"
                                 f"than {wer_thr*100:.2f}%")
        nf.sync_all_processes()

        if nf.world_size == 1:
            beam_hypotheses = []
            # Over mini-batch
            for i in evaluated_tensors[-1]:
                # Over samples
                for j in i:
                    beam_hypotheses.append(j[0][1])

            beam_wer = word_error_rate(hypotheses=beam_hypotheses,
                                       references=references)
            nemo.logging.info("Beam WER {:.2f}%".format(beam_wer * 100))
            assert beam_wer <= beam_wer_thr, (
                "Final eval beam WER {:.2f}%  > than {:.2f}%".format(
                    beam_wer * 100, beam_wer_thr * 100))
            assert beam_wer <= wer, (
                "Final eval beam WER > than the greedy WER.")

        # Reload model weights and train for extra 10 epochs
        checkpointer_callback = nemo.core.CheckpointCallback(
            folder=checkpoint_dir,
            step_freq=args.checkpoint_save_freq,
            force_load=True)

        # Distributed Data Parallel changes the underlying class so we need
        # to reinstantiate Encoder and Decoder
        args.num_epochs += 10
        previous_step_count = total_steps
        loss, eval_tensors, callbacks, total_steps, vocab, _, _ = create_dags(
            jasper_params, args, nf)

        nf.reset_trainer()
        nf.train(
            tensors_to_optimize=[loss],
            callbacks=callbacks,
            optimizer=args.optimizer,
            lr_policy=CosineAnnealing(warmup_steps=previous_step_count,
                                      total_steps=total_steps),
            optimization_params={
                "num_epochs": args.num_epochs,
                "lr": args.lr / 100,
                "momentum": args.momentum,
                "betas": betas,
                "weight_decay": args.weight_decay,
                "grad_norm_clip": None
            },
            reset=True,
            amp_max_loss_scale=256.,
            # synced_batchnorm=(nf.global_rank is not None),
        )

        evaluated_tensors = nf.infer(eval_tensors)
        if nf.global_rank in [0, None]:
            greedy_hypotheses = post_process_predictions(
                evaluated_tensors[1], vocab)
            references = post_process_transcripts(evaluated_tensors[2],
                                                  evaluated_tensors[3], vocab)
            wer_new = word_error_rate(hypotheses=greedy_hypotheses,
                                      references=references)
            nemo.logging.info("New greedy WER: {:.2f}%".format(wer_new * 100))
            if wer_new > wer * 1.1:
                nf.sync_all_processes(False)
                raise ValueError(
                    f"Fine tuning: new WER {wer_new* 100:.2f}% > than the "
                    f"previous WER {wer * 100:.2f}%")
        nf.sync_all_processes()

        # Open the log file and ensure that epochs is strictly increasing
        if nf._exp_manager.log_file:
            epochs = []
            with open(nf._exp_manager.log_file, "r") as log_file:
                line = log_file.readline()
                while line:
                    index = line.find("Starting epoch")
                    if index != -1:
                        epochs.append(int(line[index +
                                               len("Starting epoch"):]))
                    line = log_file.readline()
            for i, e in enumerate(epochs):
                if i != e:
                    raise ValueError("Epochs from logfile was not understood")