Пример #1
0
def test_commonsig_readonly():
    """Test that the common signals cannot be modified."""
    net = nengo.Network(label="test_commonsig")
    model = Model()
    model.build(net)
    signals = SignalDict()

    for sig in itervalues(model.sig['common']):
        signals.init(sig)
        with pytest.raises((ValueError, RuntimeError)):
            signals[sig] = np.array([-1])
        with pytest.raises((ValueError, RuntimeError)):
            signals[sig][...] = np.array([-1])
Пример #2
0
def test_commonsig_readonly():
    """Test that the common signals cannot be modified."""
    net = nengo.Network(label="test_commonsig")
    model = Model()
    model.build(net)
    signals = SignalDict()

    for sig in itervalues(model.sig['common']):
        signals.init(sig)
        with pytest.raises((ValueError, RuntimeError)):
            signals[sig] = np.array([-1])
        with pytest.raises((ValueError, RuntimeError)):
            signals[sig][...] = np.array([-1])
Пример #3
0
def test_signaldict(allclose):
    """Tests SignalDict's dict overrides."""
    signaldict = SignalDict()

    scalar = Signal(1.0)

    # Both __getitem__ and __setitem__ raise KeyError
    with pytest.raises(KeyError):
        signaldict[scalar]
    with pytest.raises(KeyError):
        signaldict[scalar] = np.array(1.0)

    signaldict.init(scalar)

    # tests repeat init
    with pytest.raises(SignalError, match="Cannot add signal twice"):
        signaldict.init(scalar)

    assert allclose(signaldict[scalar], np.array(1.0))
    # __getitem__ handles scalars
    assert signaldict[scalar].shape == ()

    one_d = Signal([1.0])
    signaldict.init(one_d)
    assert allclose(signaldict[one_d], np.array([1.0]))
    assert signaldict[one_d].shape == (1, )

    two_d = Signal([[1.0], [1.0]])
    signaldict.init(two_d)
    assert allclose(signaldict[two_d], np.array([[1.0], [1.0]]))
    assert signaldict[two_d].shape == (2, 1)

    # __getitem__ handles views implicitly (note no .init)
    two_d_view = two_d[0, :]
    assert allclose(signaldict[two_d_view], np.array([1.0]))
    assert signaldict[two_d_view].shape == (1, )

    # __setitem__ ensures memory location stays the same
    memloc = signaldict[scalar].__array_interface__["data"][0]
    signaldict[scalar] = np.array(0.0)
    assert allclose(signaldict[scalar], np.array(0.0))
    assert signaldict[scalar].__array_interface__["data"][0] == memloc

    memloc = signaldict[one_d].__array_interface__["data"][0]
    signaldict[one_d] = np.array([0.0])
    assert allclose(signaldict[one_d], np.array([0.0]))
    assert signaldict[one_d].__array_interface__["data"][0] == memloc

    memloc = signaldict[two_d].__array_interface__["data"][0]
    signaldict[two_d] = np.array([[0.0], [0.0]])
    assert allclose(signaldict[two_d], np.array([[0.0], [0.0]]))
    assert signaldict[two_d].__array_interface__["data"][0] == memloc

    # __str__ pretty-prints signals and current values
    # Order not guaranteed for dicts, so we have to loop
    for k in signaldict:
        assert "%s %s" % (repr(k), repr(signaldict[k])) in str(signaldict)
Пример #4
0
def test_signal_reshape():
    """Tests Signal.reshape"""
    # check proper shape after reshape
    three_d = Signal(np.ones((2, 2, 2)))
    assert three_d.reshape((8, )).shape == (8, )
    assert three_d.reshape((4, 2)).shape == (4, 2)
    assert three_d.reshape((2, 4)).shape == (2, 4)
    assert three_d.reshape(-1).shape == (8, )
    assert three_d.reshape((4, -1)).shape == (4, 2)
    assert three_d.reshape((-1, 4)).shape == (2, 4)
    assert three_d.reshape((2, -1, 2)).shape == (2, 2, 2)
    assert three_d.reshape((1, 2, 1, 2, 2, 1)).shape == (1, 2, 1, 2, 2, 1)

    # check with non-contiguous arrays (and with offset)
    value = np.arange(20).reshape(5, 4)
    s = Signal(np.array(value), name='s')

    s0slice = slice(0, 3), slice(None, None, 2)
    s0shape = 2, 3
    s0 = s[s0slice].reshape(*s0shape)
    assert s.offset == 0
    assert np.array_equal(s0.initial_value, value[s0slice].reshape(*s0shape))

    s1slice = slice(1, None), slice(None, None, 2)
    s1shape = 2, 4
    s1 = s[s1slice].reshape(s1shape)
    assert s1.offset == 4 * s1.dtype.itemsize
    assert np.array_equal(s1.initial_value, value[s1slice].reshape(s1shape))

    # check error if non-contiguous array cannot be reshaped without copy
    s2slice = slice(None, None, 2), slice(None, None, 2)
    s2shape = 2, 3
    s2 = s[s2slice]
    with pytest.raises(SignalError):
        s2.reshape(s2shape)

    # check that views are working properly (incrementing `s` effects views)
    values = SignalDict()
    values.init(s)
    values.init(s0)
    values.init(s1)

    values[s] += 1
    assert np.array_equal(values[s0], value[s0slice].reshape(s0shape) + 1)
    assert np.array_equal(values[s1], value[s1slice].reshape(s1shape) + 1)
Пример #5
0
def test_signal_reshape():
    """Tests Signal.reshape"""
    # check proper shape after reshape
    three_d = Signal(np.ones((2, 2, 2)))
    assert three_d.reshape((8,)).shape == (8,)
    assert three_d.reshape((4, 2)).shape == (4, 2)
    assert three_d.reshape((2, 4)).shape == (2, 4)
    assert three_d.reshape(-1).shape == (8,)
    assert three_d.reshape((4, -1)).shape == (4, 2)
    assert three_d.reshape((-1, 4)).shape == (2, 4)
    assert three_d.reshape((2, -1, 2)).shape == (2, 2, 2)
    assert three_d.reshape((1, 2, 1, 2, 2, 1)).shape == (1, 2, 1, 2, 2, 1)

    # check with non-contiguous arrays (and with offset)
    value = np.arange(20).reshape(5, 4)
    s = Signal(np.array(value), name='s')

    s0slice = slice(0, 3), slice(None, None, 2)
    s0shape = 2, 3
    s0 = s[s0slice].reshape(*s0shape)
    assert s.offset == 0
    assert np.array_equal(s0.initial_value, value[s0slice].reshape(*s0shape))

    s1slice = slice(1, None), slice(None, None, 2)
    s1shape = 2, 4
    s1 = s[s1slice].reshape(s1shape)
    assert s1.offset == 4 * s1.dtype.itemsize
    assert np.array_equal(s1.initial_value, value[s1slice].reshape(s1shape))

    # check error if non-contiguous array cannot be reshaped without copy
    s2slice = slice(None, None, 2), slice(None, None, 2)
    s2shape = 2, 3
    s2 = s[s2slice]
    with pytest.raises(SignalError):
        s2.reshape(s2shape)

    # check that views are working properly (incrementing `s` effects views)
    values = SignalDict()
    values.init(s)
    values.init(s0)
    values.init(s1)

    values[s] += 1
    assert np.array_equal(values[s0], value[s0slice].reshape(s0shape) + 1)
    assert np.array_equal(values[s1], value[s1slice].reshape(s1shape) + 1)
Пример #6
0
def test_signal_init(sig_type):
    if sig_type == "sparse_scipy":
        pytest.importorskip("scipy.sparse")

    sig, dense = make_signal(
        sig_type,
        shape=(3, 3),
        indices=np.asarray([[0, 0], [0, 2], [1, 1], [2, 2]]),
        data=[1.0, 2.0, 1.0, 1.5],
    )
    signals = SignalDict()
    signals.init(sig)
    assert np.all(signals[sig] == dense)

    sig.readonly = True
    signals = SignalDict()
    signals.init(sig)
    with pytest.raises((ValueError, RuntimeError, TypeError)):
        signals[sig].data[0] = -1
Пример #7
0
def test_signaldict():
    """Tests SignalDict's dict overrides."""
    signaldict = SignalDict()

    scalar = Signal(1.)

    # Both __getitem__ and __setitem__ raise KeyError
    with pytest.raises(KeyError):
        signaldict[scalar]
    with pytest.raises(KeyError):
        signaldict[scalar] = np.array(1.)

    signaldict.init(scalar)
    assert np.allclose(signaldict[scalar], np.array(1.))
    # __getitem__ handles scalars
    assert signaldict[scalar].shape == ()

    one_d = Signal([1.])
    signaldict.init(one_d)
    assert np.allclose(signaldict[one_d], np.array([1.]))
    assert signaldict[one_d].shape == (1,)

    two_d = Signal([[1.], [1.]])
    signaldict.init(two_d)
    assert np.allclose(signaldict[two_d], np.array([[1.], [1.]]))
    assert signaldict[two_d].shape == (2, 1)

    # __getitem__ handles views
    two_d_view = two_d[0, :]
    signaldict.init(two_d_view)
    assert np.allclose(signaldict[two_d_view], np.array([1.]))
    assert signaldict[two_d_view].shape == (1,)

    # __setitem__ ensures memory location stays the same
    memloc = signaldict[scalar].__array_interface__['data'][0]
    signaldict[scalar] = np.array(0.)
    assert np.allclose(signaldict[scalar], np.array(0.))
    assert signaldict[scalar].__array_interface__['data'][0] == memloc

    memloc = signaldict[one_d].__array_interface__['data'][0]
    signaldict[one_d] = np.array([0.])
    assert np.allclose(signaldict[one_d], np.array([0.]))
    assert signaldict[one_d].__array_interface__['data'][0] == memloc

    memloc = signaldict[two_d].__array_interface__['data'][0]
    signaldict[two_d] = np.array([[0.], [0.]])
    assert np.allclose(signaldict[two_d], np.array([[0.], [0.]]))
    assert signaldict[two_d].__array_interface__['data'][0] == memloc

    # __str__ pretty-prints signals and current values
    # Order not guaranteed for dicts, so we have to loop
    for k in signaldict:
        assert "%s %s" % (repr(k), repr(signaldict[k])) in str(signaldict)
Пример #8
0
def test_signaldict():
    """Tests SignalDict's dict overrides."""
    signaldict = SignalDict()

    scalar = Signal(1.)

    # Both __getitem__ and __setitem__ raise KeyError
    with pytest.raises(KeyError):
        signaldict[scalar]
    with pytest.raises(KeyError):
        signaldict[scalar] = np.array(1.)

    signaldict.init(scalar)
    assert np.allclose(signaldict[scalar], np.array(1.))
    # __getitem__ handles scalars
    assert signaldict[scalar].shape == ()

    one_d = Signal([1.])
    signaldict.init(one_d)
    assert np.allclose(signaldict[one_d], np.array([1.]))
    assert signaldict[one_d].shape == (1, )

    two_d = Signal([[1.], [1.]])
    signaldict.init(two_d)
    assert np.allclose(signaldict[two_d], np.array([[1.], [1.]]))
    assert signaldict[two_d].shape == (2, 1)

    # __getitem__ handles views
    two_d_view = two_d[0, :]
    signaldict.init(two_d_view)
    assert np.allclose(signaldict[two_d_view], np.array([1.]))
    assert signaldict[two_d_view].shape == (1, )

    # __setitem__ ensures memory location stays the same
    memloc = signaldict[scalar].__array_interface__['data'][0]
    signaldict[scalar] = np.array(0.)
    assert np.allclose(signaldict[scalar], np.array(0.))
    assert signaldict[scalar].__array_interface__['data'][0] == memloc

    memloc = signaldict[one_d].__array_interface__['data'][0]
    signaldict[one_d] = np.array([0.])
    assert np.allclose(signaldict[one_d], np.array([0.]))
    assert signaldict[one_d].__array_interface__['data'][0] == memloc

    memloc = signaldict[two_d].__array_interface__['data'][0]
    signaldict[two_d] = np.array([[0.], [0.]])
    assert np.allclose(signaldict[two_d], np.array([[0.], [0.]]))
    assert signaldict[two_d].__array_interface__['data'][0] == memloc

    # __str__ pretty-prints signals and current values
    # Order not guaranteed for dicts, so we have to loop
    for k in signaldict:
        assert "%s %s" % (repr(k), repr(signaldict[k])) in str(signaldict)
Пример #9
0
def test_signaldict_reset():
    """Tests SignalDict's reset function."""
    signaldict = SignalDict()
    two_d = Signal([[1], [1]])
    signaldict.init(two_d)

    two_d_view = two_d[0, :]
    signaldict[two_d_view] = -0.5
    assert np.allclose(signaldict[two_d], np.array([[-0.5], [1]]))

    signaldict[two_d] = np.array([[-1], [-1]])
    assert np.allclose(signaldict[two_d], np.array([[-1], [-1]]))
    assert np.allclose(signaldict[two_d_view], np.array([-1]))

    signaldict.reset(two_d_view)
    assert np.allclose(signaldict[two_d_view], np.array([1]))
    assert np.allclose(signaldict[two_d], np.array([[1], [-1]]))

    signaldict.reset(two_d)
    assert np.allclose(signaldict[two_d], np.array([[1], [1]]))
Пример #10
0
def test_signaldict_reset():
    """Tests SignalDict's reset function."""
    signaldict = SignalDict()
    two_d = Signal([[1], [1]])
    signaldict.init(two_d)

    two_d_view = two_d[0, :]
    signaldict[two_d_view] = -0.5
    assert np.allclose(signaldict[two_d], np.array([[-0.5], [1]]))

    signaldict[two_d] = np.array([[-1], [-1]])
    assert np.allclose(signaldict[two_d], np.array([[-1], [-1]]))
    assert np.allclose(signaldict[two_d_view], np.array([-1]))

    signaldict.reset(two_d_view)
    assert np.allclose(signaldict[two_d_view], np.array([1]))
    assert np.allclose(signaldict[two_d], np.array([[1], [-1]]))

    signaldict.reset(two_d)
    assert np.allclose(signaldict[two_d], np.array([[1], [1]]))