Пример #1
0
    def __init__(self, dt=0.001, label=None, decoder_cache=NoDecoderCache()):
        self.dt = dt
        self.label = label
        self.decoder_cache = decoder_cache

        # Will be filled in by the network builder
        self.toplevel = None
        self.config = None

        # Resources used by the build process
        self.operators = []
        self.params = {}
        self.probes = []
        self.seeds = {}
        self.seeded = {}

        self.sig = collections.defaultdict(dict)
        self.sig['common'][0] = Signal(0., readonly=True, name='ZERO')
        self.sig['common'][1] = Signal(1., readonly=True, name='ONE')

        self.step = Signal(np.array(0, dtype=np.int64), name='step')
        self.time = Signal(np.array(0, dtype=np.float64), name='time')
        self.add_op(TimeUpdate(self.step, self.time))

        self.build_callback = None
Пример #2
0
    def __init__(self,
                 dt=0.001,
                 machine_timestep=1000,
                 decoder_cache=NoDecoderCache(),
                 keyspaces=None):
        self.dt = dt
        self.machine_timestep = machine_timestep
        self.decoder_cache = decoder_cache

        self.params = dict()
        self.seeds = dict()
        self.rngs = dict()
        self.rng = None

        self.config = None
        self.object_operators = dict()
        self.extra_operators = list()
        self.connection_map = model.ConnectionMap()

        if keyspaces is None:
            keyspaces = KeyspaceContainer()
        self.keyspaces = keyspaces

        # Builder dictionaries
        self._builders = dict()
        self._transmission_parameter_builders = dict()
        self._source_getters = dict()
        self._reception_parameter_builders = dict()
        self._sink_getters = dict()
        self._probe_builders = dict()
Пример #3
0
    def __init__(self, dt=0.001, label=None, decoder_cache=None, builder=None):
        self.dt = dt
        self.label = label
        self.decoder_cache = (NoDecoderCache()
                              if decoder_cache is None else decoder_cache)

        # Will be filled in by the network builder
        self.toplevel = None
        self.config = None

        # Resources used by the build process
        self.operators = []
        self.params = {}
        self.probes = []
        self.seeds = {}
        self.seeded = {}

        self.sig = collections.defaultdict(dict)
        self.sig["common"][0] = Signal(np.array(0.0, dtype=rc.float_dtype),
                                       readonly=True,
                                       name="ZERO")
        self.sig["common"][1] = Signal(np.array(1.0, dtype=rc.float_dtype),
                                       readonly=True,
                                       name="ONE")

        self.step = Signal(np.array(0, dtype=rc.int_dtype), name="step")
        self.time = Signal(np.array(0, dtype=rc.float_dtype), name="time")
        self.add_op(TimeUpdate(self.step, self.time))

        self.builder = Builder() if builder is None else builder
        self.build_callback = None
    def run_test(nengo_network, nodes_as_function_of_time,
                 nodes_as_function_of_time_time_period):

        # build via gfe nengo_spinnaker_gfe spinnaker
        seed = 11111
        timer_period = 10
        app_graph_builder = NengoApplicationGraphBuilder()
        (app_graph, host_network, nengo_to_app_graph_map,
         random_number_generator) = app_graph_builder(
            nengo_network=nengo_network,
            machine_time_step=1.0,
            nengo_random_number_generator_seed=seed,
            decoder_cache=NoDecoderCache(),
            utilise_extra_core_for_probes=True,
            nengo_nodes_as_function_of_time=nodes_as_function_of_time,
            function_of_time_nodes_time_period=(
                nodes_as_function_of_time_time_period))
        interposer_installer = NengoUtiliseInterposers()
        app_graph = interposer_installer(
            app_graph, nengo_to_app_graph_map, random_number_generator,
            seed)
        machine_graph, graph_mapper = NengoPartitioner(app_graph)

        # build via nengo_spinnaker_gfe - spinnaker
        nengo_spinnaker.add_spinnaker_params(nengo_network.config)
        for nengo_node in nodes_as_function_of_time:
            nengo_network.config[nengo_node].function_of_time = True
        for nengo_node in nodes_as_function_of_time_time_period:
            nengo_network.config[nengo_node].function_of_time_period = \
                nodes_as_function_of_time_time_period[nengo_node]
        io_controller = Ethernet()
        builder_kwargs = io_controller.builder_kwargs
        nengo_spinnaker_network_builder = Model()
        nengo_spinnaker_network_builder.build(nengo_network, **builder_kwargs)
        nengo_spinnaker_network_builder.add_interposers()
        nengo_spinnaker_network_builder.make_netlist(timer_period)
        nengo_operators = dict()
        nengo_operators.update(
            nengo_spinnaker_network_builder.object_operators)
        nengo_operators.update(io_controller._sdp_receivers)
        nengo_operators.update(io_controller._sdp_transmitters)

        match = compare_against_the_nengo_spinnaker_and_gfe_impls(
            nengo_operators, nengo_to_app_graph_map,
            nengo_spinnaker_network_builder.connection_map, app_graph,
            nengo_spinnaker_network_builder)

        if not match:
            raise Exception("didnt match")
Пример #5
0
    def __init__(self, dt=0.001, label=None, builder=None):
        self.dt = dt
        self.label = label
        self.builder = Builder() if builder is None else builder
        self.build_callback = None
        self.decoder_cache = NoDecoderCache()

        # Objects created by the model for simulation on Loihi
        self.inputs = OrderedDict()
        self.blocks = OrderedDict()

        # Will be filled in by the network builder
        self.toplevel = None
        self.config = None

        # Resources used by the build process
        self.objs = defaultdict(dict)
        self.params = {}  # Holds data generated when building objects
        self.probes = []
        self.probe_conns = {}
        self.seeds = {}
        self.seeded = {}

        # --- other (typically standard) parameters
        # Filter on decode neurons
        self.decode_tau = 0.005
        # ^TODO: how to choose this filter? Even though the input is spikes,
        # it may not be absolutely necessary since tau_rc provides a filter,
        # and maybe we don't want double filtering if connection has a filter

        self.decode_neurons = Preset10DecodeNeurons(dt=dt)
        self.node_neurons = OnOffDecodeNeurons(dt=dt)

        # voltage threshold for non-spiking neurons (i.e. voltage decoders)
        self.vth_nonspiking = 10

        # limit for clipping intercepts, to avoid neurons with high gains
        self.intercept_limit = 0.95

        # scaling for PES errors, before rounding and clipping to -127..127
        self.pes_error_scale = 100.

        # learning weight exponent for PES (controls the maximum weight
        # magnitude/weight resolution)
        self.pes_wgt_exp = 4

        # Will be provided by Simulator
        self.chip2host_params = {}
Пример #6
0
    def __init__(self, dt=0.001, label=None, decoder_cache=NoDecoderCache()):
        self.dt = dt
        self.label = label
        self.decoder_cache = decoder_cache

        # We want to keep track of the toplevel network
        self.toplevel = None
        # Builders can set a config object to affect sub-builders
        self.config = None

        # Resources used by the build process.
        self.operators = []
        self.params = {}
        self.seeds = {}
        self.probes = []
        self.sig = collections.defaultdict(dict)
Пример #7
0
    def __init__(self, dt=0.001, label=None, decoder_cache=NoDecoderCache()):
        self.dt = dt
        self.label = label
        self.decoder_cache = decoder_cache

        # We want to keep track of the toplevel network
        self.toplevel = None
        # Builders can set a config object to affect sub-builders
        self.config = None

        # Resources used by the build process.
        self.operators = []
        self.params = {}
        self.seeds = {}
        self.probes = []

        self.sig = collections.defaultdict(dict)
        self.sig['common'][0] = Signal(0.0, name='ZERO', readonly=True)
        self.sig['common'][1] = Signal(1.0, name='ONE', readonly=True)
Пример #8
0
def ncc(model, sample, zscore, seed, upsample=False):
    if upsample:
        fs_scale = 50000. / TIMIT.fs
        resample_len = int(sample.shape[0] * fs_scale)
        sample = lengthen(sample, resample_len)
        model.fs = 50000

    model.audio = sample
    net = model.build(nengo.Network(seed=seed))
    with net:
        pr = nengo.Probe(net.output, synapse=0.01)
    # Disable decoder cache for this model
    _model = nengo.builder.Model(dt=0.001, decoder_cache=NoDecoderCache())
    sim = nengo.Simulator(net, model=_model)
    sim.run(model.t_audio, progress_bar=False)
    model.audio = np.zeros(1)
    feat = sim.data[pr]
    if zscore:
        feat = stats.zscore(feat, axis=0)
        feat[np.isnan(feat)] = 0.  # If variance is 0, can get nans.
    return feat
Пример #9
0
    def __init__(self, dt=0.001, label=None, decoder_cache=NoDecoderCache()):
        self.dt = dt
        self.label = label
        self.decoder_cache = decoder_cache

        # We want to keep track of the toplevel network
        self.toplevel = None
        # Builders can set a config object to affect sub-builders
        self.config = None

        # Resources used by the build process.
        self.operators = []
        self.params = {}
        self.seeds = {}
        self.probes = []

        self.sig = collections.defaultdict(dict)
        self.sig['common'][0] = Signal(0., readonly=True, name='ZERO')
        self.sig['common'][1] = Signal(1., readonly=True, name='ONE')

        self.step = Signal(np.array(0, dtype=np.int64), name='step')
        self.time = Signal(np.array(0, dtype=np.float64), name='time')
        self.add_op(TimeUpdate(self.step, self.time))
Пример #10
0
def test_cache_performance(tmpdir, Simulator, seed):
    cache_dir = str(tmpdir)

    model = nengo.Network(seed=seed)
    with model:
        nengo.Connection(nengo.Ensemble(2000, 10), nengo.Ensemble(2000, 10))

    with Timer() as t_no_cache:
        Simulator(model,
                  model=nengo.builder.Model(dt=0.001,
                                            decoder_cache=NoDecoderCache()))
    with Timer() as t_cache_miss:
        Simulator(model,
                  model=nengo.builder.Model(
                      dt=0.001,
                      decoder_cache=DecoderCache(cache_dir=cache_dir)))
    with Timer() as t_cache_hit:
        Simulator(model,
                  model=nengo.builder.Model(
                      dt=0.001,
                      decoder_cache=DecoderCache(cache_dir=cache_dir)))

    assert calc_relative_timer_diff(t_no_cache, t_cache_miss) < 0.1
    assert calc_relative_timer_diff(t_cache_hit, t_no_cache) > 0.4
Пример #11
0
    def __init__(self, dt=0.001, label=None, builder=None):
        self.dt = dt
        self.label = label
        self.builder = Builder() if builder is None else builder
        self.build_callback = None
        self.decoder_cache = NoDecoderCache()

        # TODO: these models may not look/behave exactly the same as
        # standard nengo models, because they don't have a toplevel network
        # built into them or configs set
        self.host_pre = NengoModel(
            dt=float(dt),
            label="%s:host_pre, dt=%f" % (label, dt),
            decoder_cache=NoDecoderCache(),
        )
        self.host = NengoModel(
            dt=float(dt),
            label="%s:host, dt=%f" % (label, dt),
            decoder_cache=NoDecoderCache(),
        )

        # Objects created by the model for simulation on Loihi
        self.inputs = OrderedDict()
        self.blocks = OrderedDict()
        self.block_shapes = {}
        self.probes = []

        # Will be filled in by the simulator __init__
        self.split = None

        # Will be filled in by the network builder
        self.toplevel = None
        self.config = None

        # Resources used by the build process
        self.objs = defaultdict(dict)  # maps Nengo objects to Loihi objects
        self.params = {}  # maps Nengo objects to data generated during build
        self.nengo_probes = []  # list of Nengo probes in the model
        self.nengo_probe_conns = {}
        self.seeds = {}
        self.seeded = {}

        # --- other (typically standard) parameters
        # Filter on decode neurons
        self.decode_tau = 0.005
        # ^TODO: how to choose this filter? Even though the input is spikes,
        # it may not be absolutely necessary since tau_rc provides a filter,
        # and maybe we don't want double filtering if connection has a filter

        self.decode_neurons = Preset10DecodeNeurons(dt=dt)
        self.node_neurons = OnOffDecodeNeurons(dt=dt, is_input=True)

        # voltage threshold for non-spiking neurons (i.e. voltage decoders)
        self.vth_nonspiking = 10

        # limit for clipping intercepts, to avoid neurons with high gains
        self.intercept_limit = 0.95

        # scaling for PES errors, before rounding and clipping to -127..127
        self.pes_error_scale = 100.0

        # learning weight exponent for PES (controls the maximum weight
        # magnitude/weight resolution)
        self.pes_wgt_exp = 4

        # Used to track interactions between host models
        self.chip2host_params = {}
        self.chip2host_receivers = OrderedDict()
        self.host2chip_senders = OrderedDict()
        self.host2chip_pes_senders = OrderedDict()
        self.needs_sender = {}
    def run_test(nengo_network, nodes_as_function_of_time,
                 nodes_as_function_of_time_time_period):
        seed = 11111
        app_graph_builder = NengoApplicationGraphBuilder()
        (app_graph, host_network, nengo_to_app_graph_map,
         random_number_generator) = app_graph_builder(
             nengo_network=nengo_network,
             machine_time_step=1.0,
             nengo_random_number_generator_seed=1234,
             decoder_cache=NoDecoderCache(),
             utilise_extra_core_for_probes=True,
             nengo_nodes_as_function_of_time=nodes_as_function_of_time,
             function_of_time_nodes_time_period=(
                 nodes_as_function_of_time_time_period))
        interposer_installer = NengoUtiliseInterposers()
        app_graph = interposer_installer(app_graph, random_number_generator,
                                         seed)

        virtual_machine_generator = VirtualMachineGenerator()
        machine = virtual_machine_generator(width=16,
                                            height=16,
                                            virtual_has_wrap_arounds=False,
                                            version=5,
                                            n_cpus_per_chip=18,
                                            with_monitors=True,
                                            down_chips=None,
                                            down_cores=None,
                                            down_links=None,
                                            max_sdram_size=None)

        partitioner = NengoPartitioner()
        machine_graph, graph_mapper = partitioner(app_graph,
                                                  machine,
                                                  random_number_generator,
                                                  pre_allocated_resources=None)

        # build via nengo_spinnaker_gfe - spinnaker
        nengo_spinnaker.add_spinnaker_params(nengo_network.config)
        for nengo_node in nodes_as_function_of_time:
            nengo_network.config[nengo_node].function_of_time = True
        for nengo_node in nodes_as_function_of_time_time_period:
            nengo_network.config[nengo_node].function_of_time_period = \
                nodes_as_function_of_time_time_period[nengo_node]
        io_controller = Ethernet()
        builder_kwargs = io_controller.builder_kwargs
        nengo_spinnaker_network_builder = Model()
        nengo_spinnaker_network_builder.build(nengo_network, **builder_kwargs)
        net_list = nengo_spinnaker_network_builder.make_netlist(200)
        nengo_app_operators = dict()
        nengo_app_operators.update(
            nengo_spinnaker_network_builder.object_operators)
        nengo_app_operators.update(io_controller._sdp_receivers)
        nengo_app_operators.update(io_controller._sdp_transmitters)

        match = \
            compare_against_the_nengo_spinnaker_and_gfe_impls_machine_graphs(
                # nengo bits
                nengo_app_operators, nengo_to_app_graph_map,
                nengo_spinnaker_network_builder.connection_map, net_list,
                # gfe bits
                machine_graph,
                graph_mapper, app_graph, nengo_spinnaker_network_builder)

        if not match:
            raise Exception("didnt match")
Пример #13
0
def test_no_decoder_cache():
    cache = NoDecoderCache()
    assert cache.get_size_in_bytes() == 0
    assert cache.get_size() == "0 B"
Пример #14
0
    def __init__(
            self, network, dt=constants.DEFAULT_DT,
            time_scale=constants.DEFAULT_TIME_SCALE,
            host_name=None, graph_label=None,
            database_socket_addresses=None, dsg_algorithm=None,
            n_chips_required=None, extra_pre_run_algorithms=None,
            extra_post_run_algorithms=None, decoder_cache=NoDecoderCache(),
            function_of_time_nodes=None,
            function_of_time_nodes_time_period=None):
        """Create a new Simulator with the given network.
        
        :param time_scale: Scaling factor to apply to the simulation, e.g.,\
            a value of `0.5` will cause the simulation to run at twice \
            real-time.
        :type time_scale: float
        :param host_name: Hostname of the SpiNNaker machine to use; if None\  
            then the machine specified in the config file will be used.
        :type host_name: basestring or None
        :param dt: The length of a simulator timestep, in seconds.
        :type dt: float
        :param graph_label: human readable graph label
        :type graph_label: basestring
        :param database_socket_addresses:
        :type database_socket_addresses:
        :param dsg_algorithm:
        :type dsg_algorithm:
        :param n_chips_required:
        :type n_chips_required:
        :param extra_post_run_algorithms:
        :type extra_post_run_algorithms:
        :param extra_pre_run_algorithms:
        :type extra_pre_run_algorithms:
        values
        :rtype None
        """
        self._nengo_object_to_data_map = dict()
        self._profiled_nengo_object_to_data_map = dict()
        self._nengo_to_app_graph_map = None
        self._app_graph_to_nengo_operator_map = None
        self._nengo_app_machine_graph_mapper = None

        executable_finder = ExecutableFinder()
        executable_finder.add_path(os.path.dirname(binaries.__file__))

        # Calculate the machine timestep, this is measured in microseconds
        # (hence the 1e6 scaling factor).
        machine_time_step = (
            int((dt / time_scale) *
                constants.SECONDS_TO_MICRO_SECONDS_CONVERTER))

        xml_paths = list()
        xml_paths.append(os.path.join(os.path.dirname(
            overridden_mapping_algorithms.__file__),
            self.NENGO_ALGORITHM_XML_FILE_NAME))

        SpiNNaker.__init__(
            self, executable_finder, host_name=host_name,
            graph_label=graph_label,
            database_socket_addresses=database_socket_addresses,
            dsg_algorithm=dsg_algorithm,
            n_chips_required=n_chips_required,
            extra_pre_run_algorithms=extra_pre_run_algorithms,
            extra_post_run_algorithms=extra_post_run_algorithms,
            time_scale_factor=time_scale,
            default_config_paths=[(
                os.path.join(os.path.dirname(__file__),
                             self.CONFIG_FILE_NAME))],
            machine_time_step=machine_time_step,
            extra_xml_paths=xml_paths,
            chip_id_allocator="NengoMallocBasedChipIDAllocator")

        # only add the sdram edge allocator if not using a virtual board
        extra_mapping_algorithms = list()
        if not helpful_functions.read_config_boolean(
                self.config, "Machine", "virtual_board"):
            extra_mapping_algorithms.append(
                "NengoSDRAMOutgoingPartitionAllocator")

        if function_of_time_nodes is None:
            function_of_time_nodes = list()
        if function_of_time_nodes_time_period is None:
            function_of_time_nodes_time_period = list()

        # update the main flow with new algorithms and params
        self.extend_extra_mapping_algorithms(extra_mapping_algorithms)
        self.update_extra_inputs(
            {"UserCreateDatabaseFlag": True,
             'DefaultNotifyHostName': self.config.get_str(
                "Database", "notify_hostname"),
             'NengoNodesAsFunctionOfTime': function_of_time_nodes,
             'NengoNodesAsFunctionOfTimeTimePeriod':
                 function_of_time_nodes_time_period,
             'NengoModel': network,
             'NengoDecoderCache': decoder_cache,
             "NengoNodeIOSetting": self.config.get("Simulator", "node_io"),
             "NengoEnsembleProfile":
                 self.config.getboolean("Ensemble", "profile"),
             "NengoEnsembleProfileNumSamples":
                 helpful_functions.read_config_int(
                     self.config, "Ensemble", "profile_num_samples"),
             "NengoRandomNumberGeneratorSeed":
                helpful_functions.read_config_int(
                    self.config, "Simulator", "global_seed"),
             "NengoUtiliseExtraCoreForProbes":
                self.config.getboolean(
                    "Node", "utilise_extra_core_for_probes"),
             "MachineTimeStepInSeconds": dt,
             "ReceiveBufferPort": helpful_functions.read_config_int(
                self.config, "Buffers", "receive_buffer_port"),
             "ReceiveBufferHost": self.config.get(
                 "Buffers", "receive_buffer_host"),
             "MinBufferSize": self.config.getint(
                 "Buffers", "minimum_buffer_sdram"),
             "MaxSinkBuffingSize": self.config.getint(
                 "Buffers", "sink_vertex_max_sdram_for_buffing"),
             "UsingAutoPauseAndResume": self.config.getboolean(
                 "Buffers", "use_auto_pause_and_resume"),
             "TimeBetweenRequests": self.config.getint(
                 "Buffers", "time_between_requests"),
             "BufferSizeBeforeReceive": self.config.getint(
                 "Buffers", "buffer_size_before_receive"),
             "SpikeBufferMaxSize": self.config.getint(
                "Buffers", "spike_buffer_size"),
             "VariableBufferMaxSize": self.config.getint(
                "Buffers", "variable_buffer_size")})

        # build app graph, machine graph, as the main tools expect an
        # application / machine graph level, and cannot go from random to app
        #  graph.
        nengo_app_graph_generator = NengoApplicationGraphGenerator()

        (self._nengo_operator_graph, host_network,
         self._nengo_to_app_graph_map, self._app_graph_to_nengo_operator_map,
         random_number_generator) = \
            nengo_app_graph_generator(
            self._extra_inputs["NengoModel"], self.machine_time_step,
            self._extra_inputs["NengoRandomNumberGeneratorSeed"],
            self._extra_inputs["NengoDecoderCache"],
            self._extra_inputs["NengoUtiliseExtraCoreForProbes"],
            self._extra_inputs["NengoNodesAsFunctionOfTime"],
            self._extra_inputs["NengoNodesAsFunctionOfTimeTimePeriod"],
            self.config.getboolean("Node", "optimise_utilise_interposers"),
            self._print_timings, self._do_timings, self._xml_paths,
            self._pacman_executor_provenance_path,
            self._extra_inputs["NengoEnsembleProfile"],
            self._extra_inputs["NengoEnsembleProfileNumSamples"],
            self._extra_inputs["ReceiveBufferPort"],
            self._extra_inputs["ReceiveBufferHost"],
            self._extra_inputs["MinBufferSize"],
            self._extra_inputs["MaxSinkBuffingSize"],
            self._extra_inputs["UsingAutoPauseAndResume"],
            self._extra_inputs["TimeBetweenRequests"],
            self._extra_inputs["BufferSizeBeforeReceive"],
            self._extra_inputs["SpikeBufferMaxSize"],
            self._extra_inputs["VariableBufferMaxSize"],
            self._extra_inputs["MachineTimeStepInSeconds"])

        # add the extra outputs as new inputs
        self.update_extra_inputs(
            {"NengoHostGraph": host_network,
             "NengoGraphToAppGraphMap": self._nengo_to_app_graph_map,
             "AppGraphToNengoOperatorMap":
                 self._app_graph_to_nengo_operator_map,
             "NengoRandomNumberGenerator": random_number_generator,
             "NengoOperatorGraph": self._nengo_operator_graph})