Пример #1
0
def test_probeable():
    def check_neuron_type(neuron_type, expected):
        assert neuron_type.probeable == expected
        ens = nengo.Ensemble(10, 1, neuron_type=neuron_type)
        assert ens.neurons.probeable == expected + ("input", )

    with nengo.Network():
        check_neuron_type(Direct(), ("output", ))
        check_neuron_type(RectifiedLinear(), ("output", ))
        check_neuron_type(SpikingRectifiedLinear(), ("output", "voltage"))
        check_neuron_type(Sigmoid(), ("output", ))
        check_neuron_type(Tanh(), ("output", ))
        check_neuron_type(LIFRate(), ("output", ))
        check_neuron_type(LIF(), ("output", "voltage", "refractory_time"))
        check_neuron_type(AdaptiveLIFRate(), ("output", "adaptation"))
        check_neuron_type(
            AdaptiveLIF(),
            ("output", "voltage", "refractory_time", "adaptation"))
        check_neuron_type(Izhikevich(), ("output", "voltage", "recovery"))
        check_neuron_type(RegularSpiking(LIFRate()),
                          ("output", "rate_out", "voltage"))
        check_neuron_type(StochasticSpiking(AdaptiveLIFRate()),
                          ("output", "rate_out", "adaptation"))
        check_neuron_type(PoissonSpiking(LIFRate()), ("output", "rate_out"))
Пример #2
0
 def __init__(self, tau_ref=0.0025, amplitude=1.0, initial_state=None):
     super().__init__(
         base_type=Tanh(tau_ref=tau_ref),
         amplitude=amplitude,
         initial_state=initial_state,
     )
Пример #3
0
def test_tanh_invalid():
    tanh = Tanh(tau_ref=0.5)
    with pytest.raises(ValidationError, match="Max rates must be below"):
        tanh.gain_bias(max_rates=np.array([100]), intercepts=np.array([0]))
Пример #4
0
    for max_rate, intercept in [(300.0, 1.1), (300.0, 1.0), (100.0, 0.9), (100, 1.0)]:
        with nengo.Network() as net:
            nengo.Ensemble(
                1,
                1,
                neuron_type=Sigmoid(),
                max_rates=[max_rate],
                intercepts=[intercept],
            )
        with pytest.raises(BuildError, match="lead to neurons with negative"):
            with Simulator(net):
                pass


@pytest.mark.slow
@pytest.mark.parametrize("base_type", [LIFRate(), RectifiedLinear(), Tanh()])
def test_spiking_types(base_type, seed, plt, allclose):
    spiking_types = {
        RegularSpiking: dict(atol=0.05, rmse_target=0.011),
        PoissonSpiking: dict(atol=0.13, rmse_target=0.024),
        StochasticSpiking: dict(atol=0.10, rmse_target=0.019),
    }

    n_neurons = 1000

    with nengo.Network(seed=seed) as net:
        u = nengo.Node(lambda t: np.sin(2 * np.pi * t))
        a = nengo.Ensemble(n_neurons, 1)
        nengo.Connection(u, a)
        u_p = nengo.Probe(u, synapse=0.005)
        a_p = nengo.Probe(a, synapse=0.005)
Пример #5
0
def test_tanh_invalid():
    """Ensures validation error is thrown when given a large max rate."""
    tanh = Tanh(tau_ref=0.5)
    with pytest.raises(ValidationError, match="Max rates must be below"):
        tanh.gain_bias(max_rates=np.array([100]), intercepts=np.array([0]))