lambda left, right: left <= right, "gt": lambda left, right: left > right, "ge": lambda left, right: left >= right, "pow": lambda left, right: np.power(left, right), "minimum": lambda left, right: np.minimum(left, right), "maximum": lambda left, right: np.maximum(left, right), "dot": lambda left, right: np.dot(left, right), # reduction ops "sum": lambda op_dict, left: math_cpu.sum( left, axis=op_dict['axis'], keepdims=True), "max": lambda op_dict, left: np.max(left, axis=op_dict['axis'], keepdims=True), "min": lambda op_dict, left: np.min(left, axis=op_dict['axis'], keepdims=True), "argmax": lambda op_dict, left: CustomNumpy.argmax( left, axis=op_dict['axis'], keepdims=True), "argmin": lambda op_dict, left: CustomNumpy.argmin( left, axis=op_dict['axis'], keepdims=True), } class NervanaMKL(NervanaCPU): """
"add": lambda left, right: math_cpu.add(left, right), "sub": lambda left, right: math_cpu.sub(left, right), "mul": lambda left, right: math_cpu.mul(left, right), "div": lambda left, right: math_cpu.div(left, right), "eq": lambda left, right: left == right, "ne": lambda left, right: left != right, "lt": lambda left, right: left < right, "le": lambda left, right: left <= right, "gt": lambda left, right: left > right, "ge": lambda left, right: left >= right, "pow": lambda left, right: np.power(left, right), "minimum": lambda left, right: np.minimum(left, right), "maximum": lambda left, right: np.maximum(left, right), "dot": lambda left, right: np.dot(left, right), # reduction ops "sum": lambda op_dict, left: math_cpu.sum(left, axis=op_dict['axis'], keepdims=True), "max": lambda op_dict, left: np.max(left, axis=op_dict['axis'], keepdims=True), "min": lambda op_dict, left: np.min(left, axis=op_dict['axis'], keepdims=True), "argmax": lambda op_dict, left: CustomNumpy.argmax(left, axis=op_dict['axis'], keepdims=True), "argmin": lambda op_dict, left: CustomNumpy.argmin(left, axis=op_dict['axis'], keepdims=True), } class NervanaMKL(NervanaCPU): """ MKL Backend """ backend_name = 'mkl' def __init__(self, rng_seed=None,