Пример #1
0
    'name': 'schedule',
    'base_lr': 0.01,
    'gamma': (1 / 250.)**(1 / 3.),
    'schedule': [22, 44, 65]
}

optimizer = GradientDescentMomentum(lr_schedule,
                                    0.0,
                                    wdecay=0.0005,
                                    iteration=inputs['iteration'])
train_prob = seq1(inputs['image'])
train_loss = ng.cross_entropy_multi(train_prob,
                                    ng.one_hot(inputs['label'], axis=ax.Y))
batch_cost = ng.sequential(
    [optimizer(train_loss),
     ng.mean(train_loss, out_axes=())])
train_outputs = dict(batch_cost=batch_cost)

with closing(ngt.make_transformer()) as transformer:
    train_computation = make_bound_computation(transformer, train_outputs,
                                               inputs)

    cbs = make_default_callbacks(transformer=transformer,
                                 output_file=args.output_file,
                                 frequency=args.iter_interval,
                                 train_computation=train_computation,
                                 total_iterations=args.num_iterations,
                                 use_progress_bar=args.progress_bar)

    loop_train(train_set, cbs)
Пример #2
0
                   Affine(nout=200, weight_init=UniformInit(-0.1, 0.1), activation=Rectlin()),
                   Affine(axes=ax.Y, weight_init=UniformInit(-0.1, 0.1), activation=Softmax())])

optimizer = GradientDescentMomentum(0.1, 0.9)
train_prob = seq1(inputs['image'])
train_loss = ng.cross_entropy_multi(train_prob, ng.one_hot(inputs['label'], axis=ax.Y))
batch_cost = ng.sequential([optimizer(train_loss), ng.mean(train_loss, out_axes=())])
train_outputs = dict(batch_cost=batch_cost)

with Layer.inference_mode_on():
    inference_prob = seq1(inputs['image'])
eval_loss = ng.cross_entropy_multi(inference_prob, ng.one_hot(inputs['label'], axis=ax.Y))
eval_outputs = dict(results=inference_prob, cross_ent_loss=eval_loss)

# Now bind the computations we are interested in
with closing(ngt.make_transformer()) as transformer:
    train_computation = make_bound_computation(transformer, train_outputs, inputs)
    loss_computation = make_bound_computation(transformer, eval_outputs, inputs)

    cbs = make_default_callbacks(transformer=transformer,
                                 output_file=args.output_file,
                                 frequency=args.iter_interval,
                                 train_computation=train_computation,
                                 total_iterations=args.num_iterations,
                                 eval_set=valid_set,
                                 loss_computation=loss_computation,
                                 enable_top5=True,
                                 use_progress_bar=args.progress_bar)

    loop_train(train_set, cbs)