Пример #1
0
def test_constant(backend, args):
    be = NervanaObject.be
    dim1, dim2 = args
    shape = (dim1, dim2)
    const_arg = 3
    Wdev = be.empty(shape)
    const_init = Constant(const_arg)
    const_init.fill(Wdev)
    Whost = Wdev.get()
    flat = Whost.flatten()
    for elt in flat:
        assert elt == const_arg

    return
Пример #2
0
def test_ref_compare_ones(backend, refgruargs):
    # run comparison with reference code
    # for all ones init
    seq_len, input_size, hidden_size, batch_size = refgruargs
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    check_rnn(seq_len, input_size, hidden_size, batch_size, Constant(val=1.0),
              [1.0, 0.0])
Пример #3
0
def test_ref_compare_ones(backend_default, reflstmargs):
    # run comparison with reference code
    # for all ones init
    np.random.seed(seed=0)
    seq_len, input_size, hidden_size, batch_size = reflstmargs
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    check_lstm(seq_len, input_size, hidden_size, batch_size, Constant(val=1.0),
               [1.0, 0.0])
Пример #4
0
# See the License for the specific language governing permissions and
# limitations under the License.
# ----------------------------------------------------------------------------
"""
Convolution layer tests
"""
import numpy as np
from neon import NervanaObject
from neon.backends import gen_backend
from neon.layers import Sequential, Conv, Pooling, MergeBroadcast, Affine
from neon.initializers.initializer import Gaussian, Constant
from neon.transforms import Rectlin, Softmax

init1 = Gaussian(scale=0.01)
relu = Rectlin()
bias = Constant(0)
common = dict(activation=relu, init=init1, bias=bias)
commonp1 = dict(activation=relu, init=init1, bias=bias, padding=1)
commonp3s2 = dict(activation=relu, init=init1, bias=bias, padding=3, strides=2)
pool3s1p1 = dict(fshape=3, padding=1, strides=1)
batch_size = 64


def fshape(rs, k):
    return (rs, rs, k)


def inception(kvals, name="i"):
    (p1, p2, p3) = kvals

    branch1 = [Sequential([Conv(fshape(1, p1[0]), **common)])] if p1[0] else []
Пример #5
0
 def __init__(self, init=Constant(20.0), name=None):
     super(Normalize, self).__init__(name=name, init=init)
     self.bottom_data = None
     self.norm_data = None
     self.owns_outputs = True