def allocate_deltas(self): if getattr(self, 'global_deltas', None) is None: self.global_deltas = DeltasTree() self.layers.allocate_deltas(self.global_deltas) # allocate the buffers now that all the # nesting and max sizes have been determined self.global_deltas.allocate_buffers(self.be) # set the deltas self.layers.set_deltas(self.global_deltas)
def deltas_buffer(): # empty DeltasTree object for tests that need # to allocate shared deltas buffers return DeltasTree()
def gradient_calc(seq_len, input_size, hidden_size, batch_size, add_init_state=False, epsilon=None, rand_scale=None, inp_bl=None): NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size input_shape = (input_size, seq_len * batch_size) # generate input if one is not given if inp_bl is None: inp_bl = np.random.randn(*input_shape) # neon gru instance gru = GRU(hidden_size, init=Gaussian(), activation=Tanh(), gate_activation=Logistic()) inpa = gru.be.array(np.copy(inp_bl)) # run fprop on the baseline input gru.configure((input_size, seq_len)) gru.prev_layer = True gru.allocate() test_buffer = DeltasTree() gru.allocate_deltas(test_buffer) test_buffer.allocate_buffers() gru.set_deltas(test_buffer) if add_init_state is True: slice_shape = (hidden_size, batch_size) ini_s = np.random.randn(*slice_shape) ini_s_dev = gru.be.array(ini_s.copy()) out_bl = gru.fprop(inpa, ini_s_dev).get() else: out_bl = gru.fprop(inpa).get() # random scaling/hash to generate fake loss if rand_scale is None: rand_scale = np.random.random(out_bl.shape) * 2.0 - 1.0 # loss function would be: # loss_bl = np.sum(rand_scale * out_bl) # run back prop with rand_scale as the errors # use copy to avoid any interactions deltas_neon = gru.bprop(gru.be.array(np.copy(rand_scale))).get() # add a perturbation to each input element grads_est = np.zeros(inpa.shape) inp_pert = inp_bl.copy() for pert_ind in range(inpa.size): save_val = inp_pert.flat[pert_ind] inp_pert.flat[pert_ind] = save_val + epsilon reset_gru(gru) gru.allocate() if add_init_state is True: ini_s_dev = gru.be.array(ini_s.copy()) out_pos = gru.fprop(gru.be.array(inp_pert), ini_s_dev).get() else: out_pos = gru.fprop(gru.be.array(inp_pert)).get() inp_pert.flat[pert_ind] = save_val - epsilon reset_gru(gru) gru.allocate() if add_init_state is True: ini_s_dev = gru.be.array(ini_s.copy()) out_neg = gru.fprop(gru.be.array(inp_pert), ini_s_dev).get() else: out_neg = gru.fprop(gru.be.array(inp_pert)).get() # calculate the loss with perturbations loss_pos = np.sum(rand_scale * out_pos) loss_neg = np.sum(rand_scale * out_neg) # compute the gradient estimate grad = 0.5 / float(epsilon) * (loss_pos - loss_neg) grads_est.flat[pert_ind] = grad # reset the perturbed input element inp_pert.flat[pert_ind] = save_val del gru return (grads_est, deltas_neon)
def check_gru(seq_len, input_size, hidden_size, batch_size, init_func, inp_moms=[0.0, 1.0], add_init_state=False): # init_func is the initializer for the model params # inp_moms is the [ mean, std dev] of the random input input_shape = (input_size, seq_len * batch_size) output_shape = (hidden_size, seq_len * batch_size) slice_shape = (hidden_size, batch_size) NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size # neon GRU gru = GRU(hidden_size, init_func, activation=Tanh(), gate_activation=Logistic()) # generate random input tensor inp = np.random.rand(*input_shape) * inp_moms[1] + inp_moms[0] inp_dev = gru.be.array(inp) # generate random deltas tensor deltas = np.random.randn(*output_shape) # run neon fprop gru.configure((input_size, seq_len)) gru.prev_layer = True gru.allocate() test_buffer = DeltasTree() gru.allocate_deltas(test_buffer) test_buffer.allocate_buffers() gru.set_deltas(test_buffer) if add_init_state: init_state = np.random.rand(*slice_shape) * inp_moms[1] + inp_moms[0] init_state_dev = gru.be.array(init_state) gru.fprop(inp_dev, init_state=init_state_dev) else: gru.fprop(inp_dev) # reference numpy GRU gru_ref = RefGRU(input_size, hidden_size) WGRU = gru_ref.weights # make ref weights and biases the same with neon model r_range = list(range(hidden_size)) z_range = list(range(hidden_size, hidden_size * 2)) c_range = list(range(hidden_size * 2, hidden_size * 3)) WGRU[gru_ref.weights_ind_br][:] = gru.b.get()[r_range] WGRU[gru_ref.weights_ind_bz][:] = gru.b.get()[z_range] WGRU[gru_ref.weights_ind_bc][:] = gru.b.get()[c_range] WGRU[gru_ref.weights_ind_Wxr][:] = gru.W_input.get()[r_range] WGRU[gru_ref.weights_ind_Wxz][:] = gru.W_input.get()[z_range] WGRU[gru_ref.weights_ind_Wxc][:] = gru.W_input.get()[c_range] WGRU[gru_ref.weights_ind_Rhr][:] = gru.W_recur.get()[r_range] WGRU[gru_ref.weights_ind_Rhz][:] = gru.W_recur.get()[z_range] WGRU[gru_ref.weights_ind_Rhc][:] = gru.W_recur.get()[c_range] # transpose input X and do fprop # the reference code expects these shapes: # input_shape: (seq_len, input_size, batch_size) # output_shape: (seq_len, hidden_size, batch_size) inp_ref = inp.copy().T.reshape(seq_len, batch_size, input_size).swapaxes(1, 2) deltas_ref = deltas.copy().T.reshape(seq_len, batch_size, hidden_size).swapaxes(1, 2) if add_init_state: init_state_ref = init_state.copy() (dWGRU_ref, h_ref_list, dh_ref_list, dr_ref_list, dz_ref_list, dc_ref_list) = gru_ref.lossFun(inp_ref, deltas_ref, init_state_ref) else: (dWGRU_ref, h_ref_list, dh_ref_list, dr_ref_list, dz_ref_list, dc_ref_list) = gru_ref.lossFun(inp_ref, deltas_ref) neon_logger.display('====Verifying hidden states====') assert allclose_with_out(gru.outputs.get(), h_ref_list, rtol=0.0, atol=1.0e-5) neon_logger.display('fprop is verified') # now test the bprop neon_logger.display('Making sure neon GRU matches numpy GRU in bprop') gru.bprop(gru.be.array(deltas)) # grab the delta W from gradient buffer dWinput_neon = gru.dW_input.get() dWrecur_neon = gru.dW_recur.get() db_neon = gru.db.get() dWxr_neon = dWinput_neon[r_range] dWxz_neon = dWinput_neon[z_range] dWxc_neon = dWinput_neon[c_range] dWrr_neon = dWrecur_neon[r_range] dWrz_neon = dWrecur_neon[z_range] dWrc_neon = dWrecur_neon[c_range] dbr_neon = db_neon[r_range] dbz_neon = db_neon[z_range] dbc_neon = db_neon[c_range] drzc_neon = gru.rzhcan_delta_buffer.get() dr_neon = drzc_neon[r_range] dz_neon = drzc_neon[z_range] dc_neon = drzc_neon[c_range] dWxr_ref = dWGRU_ref[gru_ref.dW_ind_Wxr] dWxz_ref = dWGRU_ref[gru_ref.dW_ind_Wxz] dWxc_ref = dWGRU_ref[gru_ref.dW_ind_Wxc] dWrr_ref = dWGRU_ref[gru_ref.dW_ind_Rhr] dWrz_ref = dWGRU_ref[gru_ref.dW_ind_Rhz] dWrc_ref = dWGRU_ref[gru_ref.dW_ind_Rhc] dbr_ref = dWGRU_ref[gru_ref.dW_ind_br] dbz_ref = dWGRU_ref[gru_ref.dW_ind_bz] dbc_ref = dWGRU_ref[gru_ref.dW_ind_bc] # neon_logger.display '====Verifying hidden deltas ====' neon_logger.display('====Verifying r deltas ====') assert allclose_with_out(dr_neon, dr_ref_list, rtol=0.0, atol=1.0e-5) neon_logger.display('====Verifying z deltas ====') assert allclose_with_out(dz_neon, dz_ref_list, rtol=0.0, atol=1.0e-5) neon_logger.display('====Verifying hcan deltas ====') assert allclose_with_out(dc_neon, dc_ref_list, rtol=0.0, atol=1.0e-5) neon_logger.display('====Verifying update on W_input====') neon_logger.display('dWxr') assert allclose_with_out(dWxr_neon, dWxr_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('dWxz') assert allclose_with_out(dWxz_neon, dWxz_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('dWxc') assert allclose_with_out(dWxc_neon, dWxc_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('====Verifying update on W_recur====') neon_logger.display('dWrr') assert allclose_with_out(dWrr_neon, dWrr_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('dWrz') assert allclose_with_out(dWrz_neon, dWrz_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('dWrc') assert allclose_with_out(dWrc_neon, dWrc_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('====Verifying update on bias====') neon_logger.display('dbr') assert allclose_with_out(dbr_neon, dbr_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('dbz') assert allclose_with_out(dbz_neon, dbz_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('dbc') assert allclose_with_out(dbc_neon, dbc_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('bprop is verified') return
def test_branch_model(backend_gpu): np.random.seed(0) be = NervanaObject.be be.bsz = 64 main1 = main_branch() i1 = inception([(32,), (32, 32), ('max', 16)]) top = top_branch() neon_layer = Sequential(main1 + i1 + top) inshape = (4, 224, 224) insize = np.prod(inshape) inpa = np.random.random((insize, batch_size)) neon_layer.configure(inshape) inp = neon_layer.be.array(inpa) neon_layer.allocate() neon_logger.display(neon_layer.nested_str()) neon_layer.layers[0].prev_layer = True neon_layer.allocate_deltas() neon_out = neon_layer.fprop(inp).get() # Now make the reference pathways: main_trunk2 = Sequential(main_branch()) main_trunk2.configure(inshape) main2 = main_trunk2.layers main2[0].prev_layer = True main2[0].deltas = be.iobuf(inshape) (b1, b2, b3) = inception_bare(i1, [(32,), (32, 32), ('max', 16)]) for bb in (b1, b2, b3): oshape = inshape for ll in main2 + bb: oshape = ll.configure(oshape) main1_trunk = neon_layer.layers[:6] for ll, lo in zip(main2, main1_trunk): if ll.has_params: ll.set_params({'params': {'W': lo.W.get(), 'weight_bias': lo.weight_bias.get()}}) ll.allocate() temp_buff = DeltasTree() ll.allocate_deltas(temp_buff) temp_buff.allocate_buffers() ll.set_deltas(temp_buff) for bb in (b1, b2, b3): for ll in bb: ll.allocate() temp_buff = DeltasTree() ll.allocate_deltas(temp_buff) temp_buff.allocate_buffers() ll.set_deltas(temp_buff) # Create the combined output buffer merge_output = be.empty_like(neon_layer.layers[6].outputs) x = inp for ll in main2: x = ll.fprop(x) start = 0 for bb in (b1, b2, b3): xb = x for ll in bb: xb = ll.fprop(xb) end = start + xb.shape[0] merge_output[start:end] = xb start = end x = merge_output top_trunk = Sequential(top).layers for ll in top_trunk: x = ll.fprop(x) neon_out_ref = x.get() assert allclose_with_out(neon_out, neon_out_ref, rtol=0) neon_logger.display("Beginning Back prop") erra = np.random.random(neon_out.shape) err = be.array(erra) for ll in reversed(neon_layer.layers[6:]): err = ll.bprop(err) neon_deltas = err.get() for bb, errb in zip((b1, b2, b3), neon_layer.layers[6].error_views): for ll in reversed(bb): errb = ll.bprop(errb) # Now sum up the deltas at the root of the branch layer and compare ref_deltas = be.zeros_like(b1[0].deltas) ref_deltas[:] = b3[0].deltas + b2[0].deltas + b1[0].deltas neon_ref_deltas = ref_deltas.get() assert allclose_with_out(neon_deltas, neon_ref_deltas, rtol=0)
def test_branch_model_fork_cpu(backend_cpu64): from neon.layers import BranchNode, Tree np.random.seed(0) be = NervanaObject.be be.bsz = 32 bnode = BranchNode() i1 = inception([(32,), (32, 32), ('max', 16)]) top1 = top_branch() top2 = top_branch() p1 = Sequential(main_branch() + [bnode, i1] + top1) p2 = [bnode] + top2 alpha2 = 0.3 neon_layer = Tree([p1, p2], alphas=[1.0, alpha2]) inshape = (4, 224, 224) insize = np.prod(inshape) inpa = np.random.random((insize, batch_size)) neon_layer.configure(inshape) inp = neon_layer.be.array(inpa) neon_layer.allocate() neon_layer.layers[0].layers[0].prev_layer = True neon_layer.allocate_deltas() neon_out_dev = neon_layer.fprop(inp) neon_out = [d.get() for d in neon_out_dev] # Now make the reference pathways: main_trunk2 = Sequential(main_branch()) main_trunk2.configure(inshape) main2 = main_trunk2.layers main2[0].prev_layer = True main2[0].deltas = be.iobuf(inshape) branch2 = Sequential(top_branch()) lbranch2 = branch2.layers (b1, b2, b3) = inception_bare(i1, [(32,), (32, 32), ('max', 16)]) for bb in (b1, b2, b3, lbranch2): oshape = inshape for ll in main2 + bb: oshape = ll.configure(oshape) main1_trunk = neon_layer.layers[0].layers[:8] for ll, lo in zip(main2, main1_trunk): if ll.has_params: ll.set_params({'params': {'W': lo.W.get()}}) ll.allocate() temp_deltas = DeltasTree() temp_deltas.proc_layer(ll) temp_deltas.allocate_buffers() ll.set_deltas(temp_deltas) for ll, lo in zip(lbranch2, neon_layer.layers[1].layers[1:]): if ll.has_params: ll.set_params({'params': {'W': lo.W.get()}}) for bb in (b1, b2, b3, lbranch2): for ll in bb: ll.allocate() temp_deltas = DeltasTree() temp_deltas.proc_layer(ll) temp_deltas.allocate_buffers() ll.set_deltas(temp_deltas) # Create the combined output buffer merge_output = be.empty_like(neon_layer.layers[0].layers[9].outputs) x = inp for ll in main2: x = ll.fprop(x) main2_out = x start = 0 for bb in (b1, b2, b3): xb = main2_out for ll in bb: xb = ll.fprop(xb) end = start + xb.shape[0] merge_output[start:end] = xb start = end x = merge_output top_trunk = Sequential(top1).layers for ll in top_trunk: x = ll.fprop(x) neon_out_ref = x.get() assert allclose_with_out(neon_out_ref, neon_out[0], rtol=0) # Now do second branch neon_out_ref2 = branch2.fprop(main2_out).get() assert allclose_with_out(neon_out_ref2, neon_out[1]) neon_logger.display("Beginning Back prop") erra = [np.random.random(d.shape) for d in neon_out] err = [be.array(d) for d in erra] neon_layer.layers[0].layers[0].deltas = be.iobuf(inshape) neon_layer.bprop(err) bottom_neon_deltas = neon_layer.layers[0].layers[1].deltas.get() middle_neon_deltas = neon_layer.layers[1].layers[1].deltas.get() err0 = err[0] for ll in reversed(top_trunk): err0 = ll.bprop(err0) err1 = err[1] for ll in reversed(lbranch2): err1 = ll.bprop(err1) for bb, errb in zip((b1, b2, b3), neon_layer.layers[0].layers[-5].error_views): for ll in reversed(bb): errb = ll.bprop(errb) # Now sum up the deltas at the root of the branch layer and compare ref_deltas = be.zeros_like(b1[0].deltas) ref_deltas[:] = alpha2 * lbranch2[0].deltas ref_deltas[:] = ref_deltas + b3[0].deltas + b2[0].deltas + b1[0].deltas neon_ref_deltas = ref_deltas.get() assert allclose_with_out(middle_neon_deltas, neon_ref_deltas, rtol=0) x = ref_deltas main2[0].deltas = be.iobuf(inshape) for ll in reversed(main2): x = ll.bprop(x) bottom_neon_ref_deltas = main2[1].deltas.get() assert allclose_with_out(bottom_neon_deltas, bottom_neon_ref_deltas, rtol=0)
def gradient_calc(seq_len, input_size, hidden_size, batch_size, epsilon=None, rand_scale=None, inp_bl=None): NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size input_shape = (input_size, seq_len * batch_size) # generate input if one is not given if inp_bl is None: inp_bl = np.random.randn(*input_shape) # neon rnn instance rnn = Recurrent(hidden_size, Gaussian(), activation=Tanh()) inpa = rnn.be.array(np.copy(inp_bl)) # run fprop on the baseline input rnn.configure((input_size, seq_len)) rnn.prev_layer = True rnn.allocate() dtree = DeltasTree() rnn.allocate_deltas(dtree) dtree.allocate_buffers() rnn.set_deltas(dtree) out_bl = rnn.fprop(inpa).get() # random scaling/hash to generate fake loss if rand_scale is None: rand_scale = np.random.random(out_bl.shape) * 2.0 - 1.0 # loss function would be: # loss_bl = np.sum(rand_scale * out_bl) # run back prop with rand_scale as the errors # use copy to avoid any interactions deltas_neon = rnn.bprop(rnn.be.array(np.copy(rand_scale))).get() # add a perturbation to each input element grads_est = np.zeros(inpa.shape) inp_pert = inp_bl.copy() for pert_ind in range(inpa.size): save_val = inp_pert.flat[pert_ind] inp_pert.flat[pert_ind] = save_val + epsilon reset_rnn(rnn) rnn.allocate() out_pos = rnn.fprop(rnn.be.array(inp_pert)).get() inp_pert.flat[pert_ind] = save_val - epsilon reset_rnn(rnn) rnn.allocate() out_neg = rnn.fprop(rnn.be.array(inp_pert)).get() # calculate the loss with perturbations loss_pos = np.sum(rand_scale * out_pos) loss_neg = np.sum(rand_scale * out_neg) # compute the gradient estimate grad = 0.5 * (loss_pos - loss_neg) / epsilon grads_est.flat[pert_ind] = grad # reset the perturbed input element inp_pert.flat[pert_ind] = save_val del rnn return (grads_est, deltas_neon)
def check_rnn(seq_len, input_size, hidden_size, batch_size, init_func, inp_moms=[0.0, 1.0]): # init_func is the initializer for the model params # inp_moms is the [ mean, std dev] of the random input input_shape = (input_size, seq_len * batch_size) output_shape = (hidden_size, seq_len * batch_size) NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size # ======== create models ======== # neon RNN rnn = Recurrent(hidden_size, init_func, activation=Tanh()) # reference numpy RNN rnn_ref = RefRecurrent(input_size, hidden_size) Wxh = rnn_ref.Wxh Whh = rnn_ref.Whh bh = rnn_ref.bh # ========= generate data ================= # generate random input tensor inp = np.random.rand(*input_shape) * inp_moms[1] + inp_moms[0] inpa = rnn.be.array(inp) # generate random deltas tensor deltas = np.random.randn(*output_shape) # the reference code expects these shapes: # input_shape: (seq_len, input_size, batch_size) # output_shape: (seq_len, hidden_size, batch_size) inp_ref = inp.copy().T.reshape(seq_len, batch_size, input_size).swapaxes(1, 2) deltas_ref = deltas.copy().T.reshape(seq_len, batch_size, hidden_size).swapaxes(1, 2) # ========= running models ========== # run neon fprop rnn.configure((input_size, seq_len)) rnn.prev_layer = True rnn.allocate() dtree = DeltasTree() rnn.allocate_deltas(dtree) dtree.allocate_buffers() rnn.set_deltas(dtree) rnn.fprop(inpa) # weights are only initialized after doing fprop, so now # make ref weights and biases the same with neon model Wxh[:] = rnn.W_input.get() Whh[:] = rnn.W_recur.get() bh[:] = rnn.b.get() (dWxh_ref, dWhh_ref, db_ref, h_ref_list, dh_ref_list, d_out_ref) = rnn_ref.lossFun(inp_ref, deltas_ref) # now test the bprop rnn.bprop(rnn.be.array(deltas)) # grab the delta W from gradient buffer dWxh_neon = rnn.dW_input.get() dWhh_neon = rnn.dW_recur.get() db_neon = rnn.db.get() # comparing outputs neon_logger.display('====Verifying hidden states====') assert allclose_with_out(rnn.outputs.get(), h_ref_list, rtol=0.0, atol=1.0e-5) neon_logger.display('fprop is verified') neon_logger.display('====Verifying update on W and b ====') neon_logger.display('dWxh') assert allclose_with_out(dWxh_neon, dWxh_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('dWhh') assert allclose_with_out(dWhh_neon, dWhh_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('====Verifying update on bias====') neon_logger.display('db') assert allclose_with_out(db_neon, db_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('bprop is verified') return
def test_branch_model(backend_gpu): np.random.seed(0) be = NervanaObject.be be.bsz = 64 main1 = main_branch() i1 = inception([(32,), (32, 32), ('max', 16)]) top = top_branch() neon_layer = Sequential(main1 + i1 + top) inshape = (4, 224, 224) insize = np.prod(inshape) inpa = np.random.random((insize, batch_size)) neon_layer.configure(inshape) inp = neon_layer.be.array(inpa) neon_layer.allocate() neon_logger.display(neon_layer.nested_str()) neon_layer.layers[0].prev_layer = True neon_layer.allocate_deltas() neon_out = neon_layer.fprop(inp).get() # Now make the reference pathways: main_trunk2 = Sequential(main_branch()) main_trunk2.configure(inshape) main2 = main_trunk2.layers main2[0].prev_layer = True main2[0].deltas = be.iobuf(inshape) (b1, b2, b3) = inception_bare(i1, [(32,), (32, 32), ('max', 16)]) for bb in (b1, b2, b3): oshape = inshape for ll in main2 + bb: oshape = ll.configure(oshape) main1_trunk = neon_layer.layers[:8] for ll, lo in zip(main2, main1_trunk): if ll.has_params: ll.set_params({'params': {'W': lo.W.get()}}) ll.allocate() temp_buff = DeltasTree() ll.allocate_deltas(temp_buff) temp_buff.allocate_buffers() ll.set_deltas(temp_buff) for bb in (b1, b2, b3): for ll in bb: ll.allocate() temp_buff = DeltasTree() ll.allocate_deltas(temp_buff) temp_buff.allocate_buffers() ll.set_deltas(temp_buff) # Create the combined output buffer merge_output = be.empty_like(neon_layer.layers[8].outputs) x = inp for ll in main2: x = ll.fprop(x) start = 0 for bb in (b1, b2, b3): xb = x for ll in bb: xb = ll.fprop(xb) end = start + xb.shape[0] merge_output[start:end] = xb start = end x = merge_output top_trunk = Sequential(top).layers for ll in top_trunk: x = ll.fprop(x) neon_out_ref = x.get() assert allclose_with_out(neon_out, neon_out_ref, rtol=0) neon_logger.display("Beginning Back prop") erra = np.random.random(neon_out.shape) err = be.array(erra) for ll in reversed(neon_layer.layers[8:]): err = ll.bprop(err) neon_deltas = err.get() for bb, errb in zip((b1, b2, b3), neon_layer.layers[8].error_views): for ll in reversed(bb): errb = ll.bprop(errb) # Now sum up the deltas at the root of the branch layer and compare ref_deltas = be.zeros_like(b1[0].deltas) ref_deltas[:] = b3[0].deltas + b2[0].deltas + b1[0].deltas neon_ref_deltas = ref_deltas.get() assert allclose_with_out(neon_deltas, neon_ref_deltas, rtol=0)
def check_gru(seq_len, input_size, hidden_size, batch_size, init_func, inp_moms=[0.0, 1.0], add_init_state=False): # init_func is the initializer for the model params # inp_moms is the [ mean, std dev] of the random input input_shape = (input_size, seq_len * batch_size) output_shape = (hidden_size, seq_len * batch_size) slice_shape = (hidden_size, batch_size) NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size # neon GRU gru = GRU(hidden_size, init_func, activation=Tanh(), gate_activation=Logistic()) # generate random input tensor inp = np.random.rand(*input_shape) * inp_moms[1] + inp_moms[0] inp_dev = gru.be.array(inp) # generate random deltas tensor deltas = np.random.randn(*output_shape) # run neon fprop gru.configure((input_size, seq_len)) gru.prev_layer = True gru.allocate() test_buffer = DeltasTree() gru.allocate_deltas(test_buffer) test_buffer.allocate_buffers() gru.set_deltas(test_buffer) if add_init_state: init_state = np.random.rand(*slice_shape)*inp_moms[1] + inp_moms[0] init_state_dev = gru.be.array(init_state) gru.fprop(inp_dev, init_state=init_state_dev) else: gru.fprop(inp_dev) # reference numpy GRU gru_ref = RefGRU(input_size, hidden_size) WGRU = gru_ref.weights # make ref weights and biases the same with neon model r_range = list(range(hidden_size)) z_range = list(range(hidden_size, hidden_size * 2)) c_range = list(range(hidden_size * 2, hidden_size * 3)) WGRU[gru_ref.weights_ind_br][:] = gru.b.get()[r_range] WGRU[gru_ref.weights_ind_bz][:] = gru.b.get()[z_range] WGRU[gru_ref.weights_ind_bc][:] = gru.b.get()[c_range] WGRU[gru_ref.weights_ind_Wxr][:] = gru.W_input.get()[r_range] WGRU[gru_ref.weights_ind_Wxz][:] = gru.W_input.get()[z_range] WGRU[gru_ref.weights_ind_Wxc][:] = gru.W_input.get()[c_range] WGRU[gru_ref.weights_ind_Rhr][:] = gru.W_recur.get()[r_range] WGRU[gru_ref.weights_ind_Rhz][:] = gru.W_recur.get()[z_range] WGRU[gru_ref.weights_ind_Rhc][:] = gru.W_recur.get()[c_range] # transpose input X and do fprop # the reference code expects these shapes: # input_shape: (seq_len, input_size, batch_size) # output_shape: (seq_len, hidden_size, batch_size) inp_ref = inp.copy().T.reshape( seq_len, batch_size, input_size).swapaxes(1, 2) deltas_ref = deltas.copy().T.reshape( seq_len, batch_size, hidden_size).swapaxes(1, 2) if add_init_state: init_state_ref = init_state.copy() (dWGRU_ref, h_ref_list, dh_ref_list, dr_ref_list, dz_ref_list, dc_ref_list) = gru_ref.lossFun(inp_ref, deltas_ref, init_state_ref) else: (dWGRU_ref, h_ref_list, dh_ref_list, dr_ref_list, dz_ref_list, dc_ref_list) = gru_ref.lossFun(inp_ref, deltas_ref) neon_logger.display('====Verifying hidden states====') assert allclose_with_out(gru.outputs.get(), h_ref_list, rtol=0.0, atol=1.0e-5) neon_logger.display('fprop is verified') # now test the bprop neon_logger.display('Making sure neon GRU matches numpy GRU in bprop') gru.bprop(gru.be.array(deltas)) # grab the delta W from gradient buffer dWinput_neon = gru.dW_input.get() dWrecur_neon = gru.dW_recur.get() db_neon = gru.db.get() dWxr_neon = dWinput_neon[r_range] dWxz_neon = dWinput_neon[z_range] dWxc_neon = dWinput_neon[c_range] dWrr_neon = dWrecur_neon[r_range] dWrz_neon = dWrecur_neon[z_range] dWrc_neon = dWrecur_neon[c_range] dbr_neon = db_neon[r_range] dbz_neon = db_neon[z_range] dbc_neon = db_neon[c_range] drzc_neon = gru.rzhcan_delta_buffer.get() dr_neon = drzc_neon[r_range] dz_neon = drzc_neon[z_range] dc_neon = drzc_neon[c_range] dWxr_ref = dWGRU_ref[gru_ref.dW_ind_Wxr] dWxz_ref = dWGRU_ref[gru_ref.dW_ind_Wxz] dWxc_ref = dWGRU_ref[gru_ref.dW_ind_Wxc] dWrr_ref = dWGRU_ref[gru_ref.dW_ind_Rhr] dWrz_ref = dWGRU_ref[gru_ref.dW_ind_Rhz] dWrc_ref = dWGRU_ref[gru_ref.dW_ind_Rhc] dbr_ref = dWGRU_ref[gru_ref.dW_ind_br] dbz_ref = dWGRU_ref[gru_ref.dW_ind_bz] dbc_ref = dWGRU_ref[gru_ref.dW_ind_bc] # neon_logger.display '====Verifying hidden deltas ====' neon_logger.display('====Verifying r deltas ====') assert allclose_with_out(dr_neon, dr_ref_list, rtol=0.0, atol=1.0e-5) neon_logger.display('====Verifying z deltas ====') assert allclose_with_out(dz_neon, dz_ref_list, rtol=0.0, atol=1.0e-5) neon_logger.display('====Verifying hcan deltas ====') assert allclose_with_out(dc_neon, dc_ref_list, rtol=0.0, atol=1.0e-5) neon_logger.display('====Verifying update on W_input====') neon_logger.display('dWxr') assert allclose_with_out(dWxr_neon, dWxr_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('dWxz') assert allclose_with_out(dWxz_neon, dWxz_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('dWxc') assert allclose_with_out(dWxc_neon, dWxc_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('====Verifying update on W_recur====') neon_logger.display('dWrr') assert allclose_with_out(dWrr_neon, dWrr_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('dWrz') assert allclose_with_out(dWrz_neon, dWrz_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('dWrc') assert allclose_with_out(dWrc_neon, dWrc_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('====Verifying update on bias====') neon_logger.display('dbr') assert allclose_with_out(dbr_neon, dbr_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('dbz') assert allclose_with_out(dbz_neon, dbz_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('dbc') assert allclose_with_out(dbc_neon, dbc_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('bprop is verified') return
def general_gradient_comp(layer, inp, epsilon=1.0e-5, loss_scale=None, lshape=None, pert_inds=None, pooling=False): # given a layer, test the bprop # using finite differences # run neon fprop layer.reset() inpa = layer.be.array(inp.copy()) in_shape = lshape if lshape is not None else inpa.shape[0] layer.configure(in_shape) if layer.owns_delta: layer.prev_layer = True layer.allocate() dtree = DeltasTree() layer.allocate_deltas(dtree) dtree.allocate_buffers() layer.set_deltas(dtree) out = layer.fprop(inpa).get() out_shape = out.shape # scale out by random matrix... if loss_scale is None: loss_scale = np.random.random(out_shape) * 2.0 - 1.0 # the loss function is: # loss_bl = np.sum(loss_scale * out) # run bprop, input deltas is rand_scale bprop_deltas = layer.bprop(layer.be.array(loss_scale.copy())).get() max_abs_err = -1.0 max_rel_err = -1.0 inp_pert = inp.copy() if pert_inds is None: pert_inds = list(range(inp.size)) for pert_ind in pert_inds: save_val = inp_pert.flat[pert_ind] # add/subtract perturbations to input inp_pert.flat[pert_ind] = save_val + epsilon # and run fprop on perturbed input layer.reset() layer.configure(in_shape) layer.allocate() inpa = layer.be.array(inp_pert.copy()) out_pos = layer.fprop(inpa).get().copy() inp_pert.flat[pert_ind] = save_val - epsilon inpa = layer.be.array(inp_pert.copy()) layer.reset() layer.configure(in_shape) layer.allocate() out_neg = layer.fprop(inpa).get().copy() # calculate the loss on outputs loss_pos = np.sum(loss_scale * out_pos) loss_neg = np.sum(loss_scale * out_neg) grad_est = 0.5 * (loss_pos - loss_neg) / epsilon # reset input inp_pert.flat[pert_ind] = save_val bprop_val = bprop_deltas.flat[pert_ind] abs_err = abs(grad_est - bprop_val) if abs_err > max_abs_err: max_abs_err = abs_err max_abs_vals = [grad_est, bprop_val] if (abs(grad_est) + abs(bprop_val)) == 0.0: rel_err = 0.0 else: rel_err = float(abs_err) / (abs(grad_est) + abs(bprop_val)) if rel_err > max_rel_err: max_rel_err = rel_err max_rel_vals = [grad_est, bprop_val] neon_logger.display('Worst case diff %e, vals grad: %e, bprop: %e' % (max_abs_err, max_abs_vals[0], max_abs_vals[1])) neon_logger.display('Worst case diff %e, vals grad: %e, bprop: %e' % (max_rel_err, max_rel_vals[0], max_rel_vals[1])) return (max_abs_err, max_rel_err)
def check_rnn(seq_len, input_size, hidden_size, batch_size, init_func, inp_moms=[0.0, 1.0]): # init_func is the initializer for the model params # inp_moms is the [ mean, std dev] of the random input input_shape = (input_size, seq_len * batch_size) output_shape = (hidden_size, seq_len * batch_size) NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size # ======== create models ======== # neon RNN rnn = Recurrent(hidden_size, init_func, activation=Tanh()) # reference numpy RNN rnn_ref = RefRecurrent(input_size, hidden_size) Wxh = rnn_ref.Wxh Whh = rnn_ref.Whh bh = rnn_ref.bh # ========= generate data ================= # generate random input tensor inp = np.random.rand(*input_shape) * inp_moms[1] + inp_moms[0] inpa = rnn.be.array(inp) # generate random deltas tensor deltas = np.random.randn(*output_shape) # the reference code expects these shapes: # input_shape: (seq_len, input_size, batch_size) # output_shape: (seq_len, hidden_size, batch_size) inp_ref = inp.copy().T.reshape( seq_len, batch_size, input_size).swapaxes(1, 2) deltas_ref = deltas.copy().T.reshape( seq_len, batch_size, hidden_size).swapaxes(1, 2) # ========= running models ========== # run neon fprop rnn.configure((input_size, seq_len)) rnn.prev_layer = True rnn.allocate() dtree = DeltasTree() rnn.allocate_deltas(dtree) dtree.allocate_buffers() rnn.set_deltas(dtree) rnn.fprop(inpa) # weights are only initialized after doing fprop, so now # make ref weights and biases the same with neon model Wxh[:] = rnn.W_input.get() Whh[:] = rnn.W_recur.get() bh[:] = rnn.b.get() (dWxh_ref, dWhh_ref, db_ref, h_ref_list, dh_ref_list, d_out_ref) = rnn_ref.lossFun(inp_ref, deltas_ref) # now test the bprop rnn.bprop(rnn.be.array(deltas)) # grab the delta W from gradient buffer dWxh_neon = rnn.dW_input.get() dWhh_neon = rnn.dW_recur.get() db_neon = rnn.db.get() # comparing outputs neon_logger.display('====Verifying hidden states====') assert allclose_with_out(rnn.outputs.get(), h_ref_list, rtol=0.0, atol=1.0e-5) neon_logger.display('fprop is verified') neon_logger.display('====Verifying update on W and b ====') neon_logger.display('dWxh') assert allclose_with_out(dWxh_neon, dWxh_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('dWhh') assert allclose_with_out(dWhh_neon, dWhh_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('====Verifying update on bias====') neon_logger.display('db') assert allclose_with_out(db_neon, db_ref, rtol=0.0, atol=1.0e-5) neon_logger.display('bprop is verified') return
def deltas_buffer_wref(): # returns 2 empty DeltasTree object for # tests that need to allocate shared # deltas buffers for 2 models # (one test, one reference) return (DeltasTree(), DeltasTree())
class Model(NervanaObject): """ Class which stores a list of layers describing the model. Can train the layer weights on a dataset, evaluate on a test set and serialize the model. Additional functionality can be added to the fit method through callback functions. Arguments: layers: layer container, a list of layers (that will be containerized), or a serialized model description dataset (NervanaDataIterator): Data set (ignored, will be removed) weights_only (bool): set to True if you do not want to recreate layers and states during deserialization from a serialized model description. Defaults to False. name (str): Model name. Defaults to "model" optimizer (Optimizer): Optimizer object which defines the learning rule for updating model parameters (i.e., GradientDescentMomentum, Adadelta) """ def __init__(self, layers, dataset=None, weights_only=False, name="model", optimizer=None): super(Model, self).__init__(name) self.optimizer = optimizer self.params = None # should be able to remove self.states = None # should be able to remove self.epoch_index = 0 self.finished = False self.initialized = False self.cost = None self.nbatches = 0 self.ndata = 0 if dataset is not None: logger.warning('dataset is a deprecated argument and will be ignored') if type(layers) in (ModelDescription, dict): # load up the model from a serialized file (dataset could be None here) self.deserialize(layers, load_states=(not weights_only)) elif isinstance(layers, (str, bytes)): self.load_params(layers, load_states=(not weights_only)) else: # Wrap the list of layers in a Sequential container if a raw list of layers if type(layers) in (Sequential, Tree, SingleOutputTree, Seq2Seq): self.layers = layers elif type(layers) == SkipThought: self.layers = layers if hasattr(layers, 'layer_dict'): self.layer_dict = layers.layer_dict else: self.layers = Sequential(layers) self.layers.propagate_parallelism("Data") @property def layers_to_optimize(self): """ Helper function to return the layers which will be optimized. """ return self.layers.layers_to_optimize def set_shortcut(self): # infer whether bprop shortcut can be used on final activation # self.cost should be set to run this otherwise do nothing lastlayer = self.layers[-1] try: if self.cost.costfunc.__class__ is CrossEntropyBinary: if (lastlayer.__class__ is Activation and lastlayer.transform.__class__ is Logistic): lastlayer.transform.set_shortcut(True) except (SystemExit, KeyboardInterrupt): raise except: # if any attributes are not set or any other exception # is thrown leave transform.shortcut as is (do nothing) pass def initialize(self, dataset, cost=None): """ Propagate shapes through the layers to configure, then allocate space. Arguments: dataset (NervanaDataIterator): Dataset iterator to perform initialization on cost (Cost): Defines the function which the model is minimizing based on the output of the last layer and the input labels. """ if self.initialized: return # Propagate shapes through the layers to configure prev_input = dataset prev_input = self.layers.configure(prev_input) if cost is not None: cost.initialize(prev_input) self.cost = cost # Now allocate space self.layers.allocate() self.layers.allocate_deltas() self.initialized = True def allocate_deltas(self): if getattr(self, 'global_deltas', None) is None: self.global_deltas = DeltasTree() self.layers.allocate_deltas(self.global_deltas) # allocate the buffers now that all the # nesting and max sizes have been determined self.global_deltas.allocate_buffers(self.be) # set the deltas self.layers.set_deltas(self.global_deltas) def __str__(self): """ String representation of model's layers """ config_string = "Network Layers:\n" + self.layers.nested_str() return config_string def fit(self, dataset, cost, optimizer, num_epochs, callbacks): """ Trains the model parameters on a dataset by minimizing the cost function through gradient descent and updates the layer weights according to a learning rule defined in optimizer. Arguments: dataset (NervanaDataIterator): An iterable of minibatches where each element is a (x, y) tuple where x is the input data and y are the labels. x is of dimension (feature_size, batch_size) y is of dimension (label_size, batch_size) Length of the iterator is num_batches which is num_data / batch_size. cost (Cost): Defines the function which the model is minimizing based on the output of the last layer and the input labels. optimizer (Optimizer): Defines the learning rule for updating the model parameters. num_epochs: Number of times to iterate over the dataset. callbacks (Callbacks): Defines callbacks to run at the end of each mini-batch / epoch. """ self.nbatches = dataset.nbatches self.ndata = dataset.ndata # self.set_shortcut() # infer if bprop shortcut can be used self.total_cost = np.empty([1, 1], dtype=np.float32) self.optimizer = optimizer self.initialize(dataset, cost) callbacks.on_train_begin(num_epochs) while self.epoch_index < num_epochs and not self.finished: self.nbatches = dataset.nbatches callbacks.on_epoch_begin(self.epoch_index) self._epoch_fit(dataset, callbacks) callbacks.on_epoch_end(self.epoch_index) self.epoch_index += 1 callbacks.on_train_end() def _epoch_fit(self, dataset, callbacks): """ Helper function for fit which performs training on a dataset for one epoch. Arguments: dataset (NervanaDataIterator): Dataset iterator to perform fit on """ epoch = self.epoch_index self.total_cost[:] = 0 # iterate through minibatches of the dataset for mb_idx, (x, t) in enumerate(dataset): callbacks.on_minibatch_begin(epoch, mb_idx) self.be.begin(Block.minibatch, mb_idx) x = self.fprop(x) self.total_cost[:] = self.total_cost + self.cost.get_cost(x, t) # deltas back propagate through layers # for every layer in reverse except the 0th one delta = self.cost.get_errors(x, t) self.bprop(delta) self.optimizer.optimize(self.layers_to_optimize, epoch=epoch) self.be.end(Block.minibatch, mb_idx) callbacks.on_minibatch_end(epoch, mb_idx) # now we divide total cost by the number of batches, # so it was never total cost, but sum of averages # across all the minibatches we trained on self.total_cost[:] = self.total_cost / dataset.nbatches def fprop(self, x, inference=False): """ Forward propagates a minibatch x through the model. Arguments: x (Tensor): Input minibatch data. inference (bool): Flag for performing training or inference Only affects batch norm and dropout layers. Returns: Tensor: the output of the final layer in the model """ return self.layers.fprop(x, inference) def bprop(self, delta): """ Back propagates the error of a minibatch through the model. Arguments: delta (Tensor): Derivative of cost with respect to the last layer's output Returns: Tensor: Deltas to propagate to the next layer """ return self.layers.bprop(delta) def eval(self, dataset, metric): """ Evaluates a model on a dataset according to an input metric. Arguments: datasets (NervanaDataIterator): dataset to evaluate on. metric (Cost): what function to evaluate dataset on. Returns: Host numpy array: the error of the final layer for the evaluation dataset """ self.initialize(dataset) running_error = np.zeros((len(metric.metric_names)), dtype=np.float32) nprocessed = 0 dataset.reset() if hasattr(dataset, 'seq_length'): ndata = dataset.ndata*dataset.seq_length else: ndata = dataset.ndata for x, t in dataset: x = self.fprop(x, inference=True) # This logic is for handling partial batch sizes at the end of the dataset nsteps = x.shape[1] // self.be.bsz if not isinstance(x, list) else \ x[0].shape[1] // self.be.bsz bsz = min(ndata - nprocessed, self.be.bsz) running_error += metric(x, t, calcrange=slice(0, nsteps * bsz)) * nsteps * bsz nprocessed += bsz * nsteps running_error /= nprocessed return running_error def get_outputs(self, dataset): """ Get the activation outputs of the final model layer for the dataset Arguments: dataset (NervanaDataIterator): Dataset iterator to perform fit on Returns: Host numpy array: the output of the final layer for the entire Dataset """ self.initialize(dataset) dataset.reset() # Move "pointer" back to beginning of dataset n = dataset.nbatches x = self.layers.layers[-1].outputs assert not isinstance(x, list), "Can not get_outputs with Branch terminal" Ypred = None for idx, input_data in enumerate(dataset): x = self.fprop(input_data[0], inference=True) if Ypred is None: (dim0, dim1) = x.shape Ypred = np.empty((n * dim1, dim0), dtype=x.dtype) nsteps = dim1 // self.be.bsz cur_batch = slice(idx * dim1, (idx + 1) * dim1) Ypred[cur_batch] = x.get().T # Handle the recurrent case. if nsteps != 1: b, s = (self.be.bsz, nsteps) Ypred = Ypred.reshape((n, s, b, -1)).transpose(0, 2, 1, 3).copy().reshape(n * b, s, -1) return Ypred[:dataset.ndata] def get_outputs_beam(self, dataset, num_beams=0, steps=None): """ Get the activation outputs of the final model layer for the dataset Arguments: dataset (NervanaDataIterator) Dataset iterator to perform fit on num_beams (int, optional) Nonzero to use beamsearch for sequence to sequence models steps (Int): Length of desired output in number of time steps Returns: Host numpy array: the output of the final layer for the entire Dataset """ self.initialize(dataset) dataset.reset() # Move "pointer" back to beginning of dataset n = dataset.nbatches x = self.layers.layers[-1].outputs assert not isinstance(x, list), "Can not get_outputs with Branch terminal" if num_beams > 0: beamsearch = BeamSearch(self.layers) Ypred = None logger.info('Performing beam search with ' + str(num_beams) + ' beams') for idx, (x, t) in enumerate(dataset): if num_beams > 0: x = beamsearch.beamsearch(x, num_beams, steps=steps) else: x = self.fprop(x, inference=True) if Ypred is None: (dim0, dim1) = x.shape Ypred = np.empty((n * dim1, dim0), dtype=x.dtype) nsteps = dim1 // self.be.bsz cur_batch = slice(idx * dim1, (idx + 1) * dim1) Ypred[cur_batch] = x.get().T # Handle the beam search case. if dim0 == getattr(dataset, 'seq_length', None): b = self.be.bsz s = dataset.seq_length Ypred = Ypred.reshape((n*b, s, -1)) # Handle the recurrent case. elif nsteps != 1: b, s = (self.be.bsz, nsteps) Ypred = Ypred.reshape((n, s, b, -1)).transpose(0, 2, 1, 3).copy().reshape(n * b, s, -1) return Ypred[:dataset.ndata] def get_description(self, get_weights=False, keep_states=False): """ Gets a description of the model required to reconstruct the model with no weights like from a yaml file. Arguments: get_weights: (Default value = False) keep_states: (Default value = False) Returns: dict: Description of each component of the model. """ pdict = dict() pdict['neon_version'] = __neon_version__ compat_mode = self.be.compat_mode if self.be.compat_mode is not None else 'neon' pdict['backend'] = {'type': self.be.__class__.__name__, 'compat_mode': compat_mode, 'rng_seed': self.be.rng_seed, 'rng_state': self.be.rng_get_state()} if self.cost: pdict['cost'] = self.cost.get_description() if self.optimizer: pdict['optimizer'] = self.optimizer.get_description() pdict['model'] = self.layers.get_description(get_weights=get_weights, keep_states=keep_states) return pdict def save_params(self, param_path, keep_states=True): """ Serializes and saves model parameters to the path specified. Arguments: param_path (str): File to write serialized parameter dict to. keep_states (bool): Whether to save optimizer states too. Defaults to True. """ self.serialize(keep_states=keep_states, fn=param_path) def load_params(self, param_path, load_states=True): """ Loads the model parameters (per layer weights, epochs run, optimizer states) saved in param_path from serialize(). Arguments: param_path (str): File containing serialized python dict with layer weights and states. load_states (bool): if False, then only the weights will be loaded into a model in which the layers have already been created, otherwise will (re)create the layers from the serialized parameters and set the learning states as well """ self.deserialize(load_obj(param_path), load_states=load_states) logger.info('Model weights loaded from %s', param_path) def load_weights(self, weight_path): """ .. deprecated:: 1.1.4 Use :func:`load_params` instead Arguments: weight_path: """ logger.warning('Calling deprecated load_weights function. Use ' 'load_params instead') self.load_params(weight_path) def deserialize(self, model_dict, data=None, load_states=True): """ Loads per layer (weights, states) and other model parameters from the dictionary passed. Arguments: model_dict (dict): dictionary describing the model including layers, cost, optimizers, backend settings, etc. generated by the serialize function data (NervanaDataIterator): Data set (ignored, will be removed) load_states (bool): if False, then only the weights will be loaded into a model in which the layers have already been created, otherwise will (re)create the layers from the serialized parameters and set the learning states as well """ if data is not None: logger.warning('data is a deprecated argument and will be ignored') if 'epoch_index' in model_dict: self.epoch_index = model_dict['epoch_index'] if 'model' not in model_dict: logger.error('Using old model serialization format. ' 'Serialized the model into new format') param_layers = [l for l in self.layers_to_optimize] param_dict_list = model_dict['layer_params_states'] for l, ps in zip(param_layers, param_dict_list): l.set_params(ps) if 'states' in ps and load_states: l.set_states(ps) return if 'backend' in model_dict: if 'compat_mode' in model_dict['backend']: self.be.compat_mode = model_dict['backend']['compat_mode'] else: model_dict['backend'] = {} typ = model_dict['model']['type'] main_container = load_class(typ) if not hasattr(self, 'layers'): self.layers = main_container.gen_class(model_dict['model']['config']) self.layers.load_weights(model_dict['model'], load_states) if load_states and 'rng_state' in model_dict['backend']: try: self.be.rng_set_state(model_dict['backend']['rng_state']) except ValueError as e: # could come about when switching backend types (ex GPU to CPU) logger.warning("Problems restoring existing RNG state: %s", str(e)) # serialize tells how to write out the parameters we've learned so # far and associate them with layers. it can ignore layers with no # learned parameters. the model stores states to pass to the # optimizers. if we're saving the model out for inference, we # don't need to remember states. def serialize(self, fn=None, keep_states=True): """ Creates a dictionary storing the layer parameters and epochs complete. Arguments: fn (str): file to save pkl formatted model dictionary keep_states (bool): Whether to save optimizer states. Returns: dict: Model data including layer parameters and epochs complete. """ # get the model dict with the weights pdict = self.get_description(get_weights=True, keep_states=keep_states) pdict['epoch_index'] = self.epoch_index + 1 if self.initialized: if not hasattr(self.layers, 'decoder'): pdict['train_input_shape'] = self.layers.in_shape else: # serialize shapes both for encoder and decoder pdict['train_input_shape'] = (self.layers.encoder.in_shape + self.layers.decoder.in_shape) if fn is not None: save_obj(pdict, fn) return return pdict def set_batch_size(self, N): """ Set the actual minibatch size, so even though the buffers are allocated considering excessive padding, the processing for some layers may be shortened. Currently most of the neon layers don't use that to control the processing. The interface is here only for when someone wants to set that information and experiment. Arguments: N: Returns: """ return self.layers.set_batch_size(N) def set_seq_len(self, S): """ Set the actual minibatch sequence length, so even though the buffers are allocated considering excessive padding, the processing for some layers may be shortened. Currently most of the neon layers don't use that to control the processing. The interface is here only for when someone wants to set that information and experiment. Arguments: S: Returns: """ return self.layers.set_seq_len(S) def benchmark(self, dataset, inference=False, cost=None, optimizer=None, niterations=20, nskip=2): """ Measure runtime for computing fprop and bprop separately, as well as full minibatch run times. For inference case, only the fprop is measured. Arguments: dataset (NervanaDataIterator) Dataset iterator to perform fit on cost (Cost): Defines the function which the model is minimizing based on the output of the last layer and the input labels niterations (optional, int): Number of minibatches to average over nskip (optional, int): Number of iterations at the beginning to skip when calculating the runtime statistics inference (bool, optional): Is inference use case optimizer (Optimizer): Defines the learning rule for updating the model parameters. Returns: dictionary with fprop, bprop run times """ # initialize model if inference is False and (cost is None or optimizer is None): raise RuntimeError("Need cost and optimizer to benchmark bprop") self.cost = cost self.initialize(dataset, cost) self.optimizer = optimizer self.total_cost = np.empty((1, 1)) self.total_cost[:] = 0 # iterate through minibatches of the dataset times = OrderedDict() time_keys = ['fprop'] if inference else ['fprop', 'bprop', 'iteration'] for ky in time_keys: times[ky] = np.full(niterations + nskip, -1.0) count = 0 fprop_start = self.be.init_mark() fprop_end = self.be.init_mark() bprop_end = self.be.init_mark() while count < niterations + nskip: dataset.reset() for mb_idx, (x, t) in enumerate(dataset): self.be.record_mark(fprop_start) # mark start of fprop x = self.fprop(x, inference) if inference is False: self.total_cost[:] = self.total_cost + self.cost.get_cost(x, t) self.be.record_mark(fprop_end) # mark end of fprop and start of bprop if inference is False: delta = self.cost.get_errors(x, t) self.bprop(delta) self.optimizer.optimize(self.layers_to_optimize, epoch=0) self.be.record_mark(bprop_end) # mark end of bprop self.be.synchronize_mark(bprop_end) else: self.be.synchronize_mark(fprop_end) times['fprop'][count] = self.be.get_time(fprop_start, fprop_end) if inference is False: times['bprop'][count] = self.be.get_time(fprop_end, bprop_end) times['iteration'][count] = times['fprop'][count] + times['bprop'][count] count += 1 if count >= niterations + nskip: break # print results header = ('Func', 'Mean', 'Median', 'Min', 'Max', 'Units') stats = tuple(stat.lower() for stat in header[1:-1]) fmt_titles = '| {:^11} ' * len(header) + '|' fmt_nums = '| {func:<11} ' + '| {%s:<10.5g} ' * len(stats) % (stats) + '| {units:^11} |' head_str = fmt_titles.format(*header) sep = '-' * len(head_str) neon_logger.display(sep) neon_logger.display(head_str) neon_logger.display(sep) out_stats = {} for step in times: timesu = np.array(times[step][nskip:]) # in ms out_stats[step] = {} for stat in stats: out_stats[step][stat] = getattr(np, stat)(timesu) neon_logger.display(fmt_nums.format(units='msec', func=step, **out_stats[step])) neon_logger.display(sep) return out_stats
def check_lstm(seq_len, input_size, hidden_size, batch_size, init_func, inp_moms=[0.0, 1.0]): # init_func is the initializer for the model params # inp_moms is the [ mean, std dev] of the random input input_shape = (input_size, seq_len * batch_size) hidden_shape = (hidden_size, seq_len * batch_size) NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size # neon LSTM lstm = LSTM(hidden_size, init_func, activation=Tanh(), gate_activation=Logistic()) inp = np.random.rand(*input_shape) * inp_moms[1] + inp_moms[0] inpa = lstm.be.array(inp) # run neon fprop lstm.configure((input_size, seq_len)) lstm.prev_layer = True # Hack to force allocating a delta buffer lstm.allocate() dtree = DeltasTree() lstm.allocate_deltas(dtree) dtree.allocate_buffers() lstm.set_deltas(dtree) lstm.fprop(inpa) # reference numpy LSTM lstm_ref = RefLSTM() WLSTM = lstm_ref.init(input_size, hidden_size) # make ref weights and biases with neon model WLSTM[0, :] = lstm.b.get().T WLSTM[1:input_size + 1, :] = lstm.W_input.get().T WLSTM[input_size + 1:] = lstm.W_recur.get().T # transpose input X and do fprop inp_ref = inp.copy().T.reshape(seq_len, batch_size, input_size) (Hout_ref, cprev, hprev, batch_cache) = lstm_ref.forward(inp_ref, WLSTM) # the output needs transpose as well Hout_ref = Hout_ref.reshape(seq_len * batch_size, hidden_size).T IFOGf_ref = batch_cache['IFOGf'].reshape(seq_len * batch_size, hidden_size * 4).T Ct_ref = batch_cache['Ct'].reshape(seq_len * batch_size, hidden_size).T # compare results neon_logger.display('====Verifying IFOG====') assert allclose_with_out(lstm.ifog_buffer.get(), IFOGf_ref, rtol=0.0, atol=1.5e-5) neon_logger.display('====Verifying cell states====') assert allclose_with_out(lstm.c_act_buffer.get(), Ct_ref, rtol=0.0, atol=1.5e-5) neon_logger.display('====Verifying hidden states====') assert allclose_with_out(lstm.outputs.get(), Hout_ref, rtol=0.0, atol=1.5e-5) neon_logger.display('fprop is verified') # now test the bprop # generate random deltas tensor deltas = np.random.randn(*hidden_shape) lstm.bprop(lstm.be.array(deltas)) # grab the delta W from gradient buffer dWinput_neon = lstm.dW_input.get() dWrecur_neon = lstm.dW_recur.get() db_neon = lstm.db.get() deltas_ref = deltas.copy().T.reshape(seq_len, batch_size, hidden_size) (dX_ref, dWLSTM_ref, dc0_ref, dh0_ref) = lstm_ref.backward(deltas_ref, batch_cache) dWrecur_ref = dWLSTM_ref[-hidden_size:, :] dWinput_ref = dWLSTM_ref[1:input_size + 1, :] db_ref = dWLSTM_ref[0, :] dX_ref = dX_ref.reshape(seq_len * batch_size, input_size).T # compare results neon_logger.display('Making sure neon LSTM match numpy LSTM in bprop') neon_logger.display('====Verifying update on W_recur====') assert allclose_with_out(dWrecur_neon, dWrecur_ref.T, rtol=0.0, atol=1.5e-5) neon_logger.display('====Verifying update on W_input====') assert allclose_with_out(dWinput_neon, dWinput_ref.T, rtol=0.0, atol=1.5e-5) neon_logger.display('====Verifying update on bias====') assert allclose_with_out(db_neon.flatten(), db_ref, rtol=0.0, atol=1.5e-5) neon_logger.display('====Verifying output delta====') assert allclose_with_out(lstm.out_deltas_buffer.get(), dX_ref, rtol=0.0, atol=1.5e-5) neon_logger.display('bprop is verified') return