def cifar10_mean_subtract(x): bgr_mean = ng.persistent_tensor(axes=[x.axes.channel_axis()], initial_value=np.array( [113.9, 123.0, 125.3])) bgr_std = ng.persistent_tensor(axes=[x.axes.channel_axis()], initial_value=np.array([66.7, 62.1, 63.0])) return (x - bgr_mean) / bgr_std
def test_sequential_side(M): x1_np = 2 x2_np = 3 b_np = 1 x_np = np.array([1, 2, 3], dtype=np.float32) x = ng.variable([M], initial_value=x_np) x1 = ng.persistent_tensor(axes=(), initial_value=x1_np) x2 = ng.persistent_tensor(axes=(), initial_value=x2_np) x1_vo = ng.value_of(x1) x2_vo = ng.value_of(x2) b = ng.persistent_tensor(axes=(), initial_value=b_np) y = ng.sequential([ x1_vo, x2_vo, ng.assign(x1, ng.sum(x, out_axes=()) + x1 * b + (1 - b)), ng.assign(x2, ng.mean(x, out_axes=()) + x2 * b + (1 - b)), x * 2 ]) with ExecutorFactory() as ex: main_effect = ex.executor((y, x1_vo, x2_vo, x1, x2)) current_values = ex.executor((x1, x2)) # Run main path #1 y_val, x1_init_val, x2_init_val, x1_final_val, x2_final_val = main_effect( ) y_np = x_np * 2 assert np.allclose(y_val, y_np) assert np.allclose(x1_init_val, x1_np) assert np.allclose(x2_init_val, x2_np) x1_np = np.sum(x_np) + x1_np * b_np + (1 - b_np) x2_np = np.mean(x_np) + x2_np * b_np + (1 - b_np) assert np.allclose(x1_final_val, x1_np) assert np.allclose(x2_final_val, x2_np) x1_val, x2_val = current_values() assert np.allclose(x1_val, x1_np) assert np.allclose(x2_val, x2_np) # Run main path #2 (Should be the same as before) y_val, x1_init_val, x2_init_val, x1_final_val, x2_final_val = main_effect( ) y_np = x_np * 2 assert np.allclose(y_val, y_np) assert np.allclose(x1_init_val, x1_np) assert np.allclose(x2_init_val, x2_np) x1_np = np.sum(x_np) + x1_np * b_np + (1 - b_np) x2_np = np.mean(x_np) + x2_np * b_np + (1 - b_np) assert np.allclose(x1_final_val, x1_np) assert np.allclose(x2_final_val, x2_np)
def variable_update(self, variable, grad, scale_factor, weight_clip_value): m = ng.persistent_tensor(axes=grad.axes, initial_value=0.) v = ng.persistent_tensor(axes=grad.axes, initial_value=0.) updates = ng.sequential([ ng.assign(m, m * self.beta_1 + (1 - self.beta_1) * grad), ng.assign(v, v * self.beta_2 + (1 - self.beta_2) * grad * grad), ng.assign(variable, clip_weight_value(variable - (scale_factor * self.ell * m) / (ng.sqrt(v) + self.epsilon), weight_clip_value)) ]) return updates
def variable_update(self, variable, grad, scale_factor, weight_clip_value): epsilon, decay = (self.epsilon, self.decay_rate) grad = clip_gradient_value(grad, self.gradient_clip_value) state = ng.persistent_tensor(axes=variable.axes, initial_value=1.) velocity = ng.persistent_tensor(axes=variable.axes, initial_value=0.).named(variable.name + '_vel') updates = ng.sequential([ ng.assign(state, decay * state + (1.0 - decay) * ng.square(grad)), ng.assign(velocity, velocity * self.momentum + (self.lrate * scale_factor * grad / ng.sqrt(state + epsilon)) + self.lrate * self.wdecay * variable), ng.assign(variable, clip_weight_value(variable - velocity, weight_clip_value)) ]) return updates
def test_concatenate(): with ExecutorFactory() as ex: A = ng.make_axis(name='A', length=3) B = ng.make_axis(name='B', length=4) np_shape = (A.length, B.length) x0_np = -np.ones(np_shape) x1_np = np.ones(np_shape) x0_ng = ng.persistent_tensor([A, B], initial_value=x0_np).named('x0') x1_ng = ng.persistent_tensor([A, B], initial_value=x1_np).named('x1') j_np = np.concatenate([x0_np, x1_np], axis=0) j_ng = ng.concat_along_axis([x0_ng, x1_ng], A) f = ex.executor(j_ng) j_val = f() ng.testing.assert_allclose(j_val, j_np)
def variable_update(self, variable, grad, scale_factor, weight_clip_value): grad = clip_gradient_value(grad, self.gradient_clip_value) state = ng.persistent_tensor(axes=grad.axes, initial_value=0.) updates = ng.sequential([ ng.assign(state, state + ng.square(grad)), ng.assign(variable, clip_weight_value(variable - (scale_factor * self.lrate * grad) / (ng.sqrt(state + self.epsilon)), weight_clip_value)) ]) return updates
def __call__(self, *args, **kwargs): if len(self.ops) == 0: self.beta_1 = ng.constant(self.beta_1, dtype=np.float32) self.beta_2 = ng.constant(self.beta_2, dtype=np.float32) self.t = ng.persistent_tensor(axes=(), initial_value=0) self.t = ng.sequential([ng.assign(self.t, self.t + 1), self.t]) self.ell = self.lrate * ng.sqrt(1 - self.beta_2 ** self.t) / (1 - self.beta_1 ** self.t) return super(Adam, self).__call__(*args, **kwargs)
def test_write_state(): """ This reads back a tensor set from an argument. No code is generated. """ with ExecutorFactory() as ex: N = ng.make_axis(3, name='N') x_np = np.ones((N.length)) * 4 x = ng.persistent_tensor([N]).named('x') f = ex.executor(x, x) x_val = f(x_np) assert np.allclose(x_np, x_val)
def __call__(self, in_obj): if not self.initialized: w_axis = ng.make_axis() self.weight = ng.variable(axes=[w_axis], initial_value=2, metadata={"label": LABELS["weight"]}, name="W") self.side_effect = ng.persistent_tensor(axes=[w_axis], initial_value=0) return ng.sequential([ng.assign(self.side_effect, self.weight), self.weight * in_obj])
def test_scope_ops(input_placeholder): """ Test scope_ops creates a subgraph with correct attributes """ with scope_ops(name="foo") as subgraph: w = ng.variable(ng.make_axis(), initial_value=1, name="W") y = w * input_placeholder z = y + 4 v1 = ng.persistent_tensor(w.axes, initial_value=0, name="effect1") v2 = ng.persistent_tensor(w.axes, initial_value=0, name="effect2") ng.sequential([ng.assign(v1, w), ng.assign(v2, w), z.named("output")]) assert len(subgraph.inputs) == 1 assert input_placeholder.unscoped_name in subgraph.inputs assert len(subgraph.variables) == 1 assert "W" in subgraph.variables assert len(subgraph.outputs) == 1 assert "output" in subgraph.outputs assert len(subgraph.side_effects) == 2
def variable_update(self, variable, grad, scale_factor, weight_clip_value): updates = [] """ for op in ng.Op.ordered_ops([grad]): op_var = ng.persistent_tensor(axes=op.tensor.axes, initial_value=0.).named(variable.name + '_' + op.name) updates.append(ng.assign(op_var, op)) """ velocity = ng.persistent_tensor(axes=variable.axes, initial_value=0.).named(variable.name + '_vel') clip_grad = clip_gradient_value(grad, self.gradient_clip_value) lr = - self.lrate * (scale_factor * clip_grad + self.wdecay * variable) updates.append(ng.assign(velocity, velocity * self.momentum_coef + lr)) if self.nesterov: delta = (self.momentum_coef * velocity + lr) else: delta = velocity updates.append(ng.assign(variable, clip_weight_value(variable + delta, weight_clip_value))) return ng.sequential(updates)
def test_specific_slice_deriv(): # with ExecutorFactory() as ex: A = ng.make_axis(name='A', length=3) B = ng.make_axis(name='B', length=4) np_shape = (A.length, B.length) x_np = np.empty(np_shape, dtype=np.float32) for i in range(A.length): for j in range(B.length): x_np[i, j] = 10 * i + j x_ng = ng.persistent_tensor([A, B], initial_value=x_np) for i in range(A.length): for j in range(B.length): slice = ng.tensor_slice(x_ng, (i, j)) dslice_dx = ng.deriv(slice, x_ng) dslice_dx_fun = ex.executor(dslice_dx) dslice_dx_val = dslice_dx_fun() dslice_dx_np = np.zeros_like(x_np) dslice_dx_np[i, j] = 1 ng.testing.assert_allclose(dslice_dx_val, dslice_dx_np)
def test_persistent_tensor(): input_axes = ng.make_axes([ng.make_axis(10), ng.make_axis(3)]) bgr = ng.persistent_tensor(axes=input_axes, initial_value=np.array([113.9, 123.0, 125.3])) bgr_comp = ng.computation(bgr, "all") results = dict() weight_saver = Saver() with closing(ngt.make_transformer()) as transformer: bgr_func = transformer.add_computation(bgr_comp) weight_saver.setup_save(transformer=transformer, computation=bgr_comp) results['saved'] = bgr_func().copy() weight_saver.save(filename="test_persistent_tensor") with closing(ngt.make_transformer()) as restore_transformer: bgr_refunc = restore_transformer.add_computation(bgr_comp) weight_saver.setup_restore(transformer=restore_transformer, computation=bgr_comp, filename="test_persistent_tensor") weight_saver.restore() results['restored'] = bgr_refunc().copy() os.remove("test_persistent_tensor.npz") assert np.allclose(results['saved'], results['restored'], atol=0)
def cifar_mean_subtract(x): bgr_mean = ng.persistent_tensor( axes=x.axes.find_by_name('C'), initial_value=np.array([104., 119., 127.])) return (x - bgr_mean) / 255.
def i1k_mean_subtract(x): bgr_mean = ng.persistent_tensor(axes=[x.axes.channel_axis()], initial_value=np.array( [127.0, 119.0, 104.0])) return (x - bgr_mean)