Пример #1
0
def tune_fit(cxpb, mu, alpha, cxmode):

    #--setup the parameter space
    nx = 5
    BOUNDS = {}
    for i in range(1, nx + 1):
        BOUNDS['x' + str(i)] = ['float', -100, 100]

    #--setup the ES algorithm
    es = ES(mode='min',
            bounds=BOUNDS,
            fit=sphere,
            lambda_=80,
            mu=mu,
            mutpb=0.1,
            alpha=alpha,
            cxmode=cxmode,
            cxpb=cxpb,
            ncores=1,
            seed=1)

    #--Evolute the ES object and obtains y_best
    #--turn off verbose for less algorithm print-out when tuning
    x_best, y_best, es_hist = es.evolute(ngen=100, verbose=0)

    return y_best  #returns the best score
Пример #2
0
def test_es():
    #Define the fitness function
    def FIT(individual):
        """Sphere test objective function.
                    F(x) = sum_{i=1}^d xi^2
                    d=1,2,3,...
                    Range: [-100,100]
                    Minima: 0
            """
        y = sum(x**2 for x in individual)
        return y

    #Setup the parameter space (d=5)
    nx = 5
    BOUNDS = {}
    for i in range(1, nx + 1):
        BOUNDS['x' + str(i)] = ['float', -100, 100]

    es = ES(mode='min',
            bounds=BOUNDS,
            fit=FIT,
            lambda_=80,
            mu=40,
            mutpb=0.25,
            cxmode='blend',
            cxpb=0.7,
            ncores=1,
            seed=1)
    x_best, y_best, es_hist = es.evolute(ngen=100, verbose=0)
Пример #3
0
def tune_fit(cxpb, mu, alpha, cxmode, mutpb):

    #--setup the ES algorithm
    es = ES(mode='min',
            bounds=BOUNDS,
            fit=BEAM,
            lambda_=80,
            mu=mu,
            mutpb=mutpb,
            alpha=alpha,
            cxmode=cxmode,
            cxpb=cxpb,
            ncores=1,
            seed=1)

    #--Evolute the ES object and obtains y_best
    #--turn off verbose for less algorithm print-out when tuning
    x_best, y_best, es_hist = es.evolute(ngen=100, verbose=0)

    return y_best  #returns the best score
Пример #4
0
#Define the fitness function
def FIT(individual):
    """Sphere test objective function.
            F(x) = sum_{i=1}^d xi^2
            d=1,2,3,...
            Range: [-100,100]
            Minima: 0
    """
    y = sum(x**2 for x in individual)
    return y


#Setup the parameter space (d=5)
nx = 5
BOUNDS = {}
for i in range(1, nx + 1):
    BOUNDS['x' + str(i)] = ['float', -100, 100]

es = ES(mode='min',
        bounds=BOUNDS,
        fit=FIT,
        lambda_=80,
        mu=40,
        mutpb=0.25,
        cxmode='blend',
        cxpb=0.7,
        ncores=1,
        seed=1)
x_best, y_best, es_hist = es.evolute(ngen=100, verbose=1)
Пример #5
0
bounds['x4'] = ['float', 10, 200]

########################
# Setup and evolute HHO
########################
hho = HHO(mode='min', bounds=bounds, fit=Vessel, nhawks=50, 
                  int_transform='minmax', ncores=1, seed=1)
x_hho, y_hho, hho_hist=hho.evolute(ngen=200, verbose=False)
assert Vessel(x_hho) == y_hho

########################
# Setup and evolute ES 
########################
es = ES(mode='min', fit=Vessel, cxmode='cx2point', bounds=bounds, 
                 lambda_=60, mu=30, cxpb=0.7, mutpb=0.2, seed=1)
x_es, y_es, es_hist=es.evolute(ngen=200, verbose=False)
assert Vessel(x_es) == y_es

########################
# Setup and evolute PESA
########################
pesa=PESA(mode='min', bounds=bounds, fit=Vessel, npop=60, mu=30, alpha_init=0.01,
          alpha_end=1.0, cxpb=0.7, mutpb=0.2, alpha_backdoor=0.05)
x_pesa, y_pesa, pesa_hist=pesa.evolute(ngen=200, verbose=False)
assert Vessel(x_pesa) == y_pesa

########################
# Setup and evolute BAT
########################
bat=BAT(mode='min', bounds=bounds, fit=Vessel, nbats=50, fmin = 0 , fmax = 1, 
        A=0.5, r0=0.5, levy = True, seed = 1, ncores=1)
Пример #6
0
#---------------------------------
# GA
#---------------------------------
ga = ES(mode='min',
        bounds=space,
        fit=ACKLEY,
        lambda_=50,
        mu=25,
        mutpb=0.15,
        alpha=0.5,
        cxmode='blend',
        cxpb=0.85,
        ncores=1,
        seed=1)
x_ga, y_ga, ga_hist = ga.evolute(ngen=150, verbose=0)

#---------------------------------
# GWO
#---------------------------------
gwo = GWO(mode='min', fit=ACKLEY, bounds=space, nwolves=50, ncores=1, seed=1)
x_gwo, y_gwo, gwo_hist = gwo.evolute(ngen=150, verbose=0)

#---------------------------------
# WOA
#---------------------------------
woa = WOA(mode='min',
          bounds=space,
          fit=ACKLEY,
          nwhales=50,
          a0=1.5,
Пример #7
0
          seed=1)
x_pesa, y_pesa, pesa_hist=pesa.evolute(ngen=300, x0=x0, verbose=False)

#Run GA
#use same optimized hyperparameters from PESA (or repeat tuning again for GA)
ga=ES(mode='min', bounds=bounds, fit=Vessel, cxmode='cx2point',
      lambda_=sorted_res['npop'].iloc[0], 
      mu=int(sorted_res['frac'].iloc[0]*sorted_res['npop'].iloc[0]), 
      mutpb=sorted_res['mutpb'].iloc[0],
      cxpb=sorted_res['cxpb'].iloc[0], 
      ncores=1, seed=1)

#filter initial guess for GA
#lambda_=int(sorted_res['npop'].iloc[0])
#x0_ga=x0[:lambda_]
x_ga, y_ga, ga_hist=ga.evolute(ngen=300, x0=None, verbose=0)  #or use x0_ga if you like 
                                                              #(random guess seems to be better)

#*************************************************************
# Part VI: Post-processing
#*************************************************************
#plot results
plt.figure()
plt.plot(pesa_hist, label='PESA')
plt.plot(ga_hist, label='GA')
plt.xlabel('Generation')
plt.ylabel('Fitness')
plt.legend()
plt.savefig('ex2_ans21_fitness.png',format='png', dpi=300, bbox_inches="tight")

#print best results