Пример #1
0
 def log(self, key, v):
     value = deepcopy(v)
     if isinstance(value, np.ndarray) and len(value.shape) == 0:
         value = float(value)
     elif isinstance(value, np.ndarray) and len(value.shape) == 1:
         value = File.as_image(np.array([value]))
     elif isinstance(value, np.ndarray) and len(value.shape) <= 3:
         value = File.as_image(value)
     elif isinstance(value, np.ndarray):
         return
     self.run[key].log(value)
Пример #2
0
 def test_log_many_values(self):
     exp = init(mode="debug", flush_period=0.5)
     exp["some/num/val"].log([5, 10, 15])
     exp["some/str/val"].log(["some text", "other"])
     exp["some/img/val"].log([
         FileVal.as_image(PIL.Image.new("RGB", (60, 30), color="red")),
         FileVal.as_image(PIL.Image.new("RGB", (20, 90), color="red")),
     ])
     self.assertEqual(exp["some"]["num"]["val"].fetch_last(), 15)
     self.assertEqual(exp["some"]["str"]["val"].fetch_last(), "other")
     self.assertIsInstance(exp.get_structure()["some"]["img"]["val"],
                           FileSeries)
Пример #3
0
    def test_log_value_errors(self):
        exp = init(mode="debug", flush_period=0.5)
        img = FileVal.as_image(PIL.Image.new("RGB", (60, 30), color="red"))

        with self.assertRaises(ValueError):
            exp["x"].log([])
        with self.assertRaises(ValueError):
            exp["x"].log([5, "str"])
        with self.assertRaises(ValueError):
            exp["x"].log([5, 10], step=10)

        exp["some/num/val"].log([5], step=1)
        exp["some/num/val"].log([])
        with self.assertRaises(ValueError):
            exp["some/num/val"].log("str")
        with self.assertRaises(TypeError):
            exp["some/num/val"].log(img)

        exp["some/str/val"].log(["str"], step=1)
        exp["some/str/val"].log([])

        exp["some/img/val"].log([img], step=1)
        exp["some/img/val"].log([])
        with self.assertRaises(TypeError):
            exp["some/img/val"].log(5)
        with self.assertRaises(FileNotFound):
            exp["some/img/val"].log("path")

        self.assertEqual(exp["some"]["num"]["val"].fetch_last(), 5)
        self.assertEqual(exp["some"]["str"]["val"].fetch_last(), "str")
        self.assertIsInstance(exp.get_structure()["some"]["img"]["val"],
                              FileSeries)
Пример #4
0
    def handle_files_and_images(self):
        # image
        im_frame = Image.open(self.img_path)
        g_img = File.as_image(im_frame)
        self.exp[ARTIFACT_ATTRIBUTE_SPACE]["assigned image"] = g_img
        self.exp.wait()
        with self.with_check_if_file_appears("assigned image.png"):
            self.exp[ARTIFACT_ATTRIBUTE_SPACE]["assigned image"].download()
        with self.with_check_if_file_appears("custom_dest.png"):
            self.exp[ARTIFACT_ATTRIBUTE_SPACE]["assigned image"].download(
                "custom_dest.png")

        self.exp[ARTIFACT_ATTRIBUTE_SPACE]["logged image"].log(g_img)

        with open(self.img_path, mode="r") as f:
            # self.exp[ARTIFACT_ATTRIBUTE_SPACE]['assigned image stream'] = f
            self.exp[ARTIFACT_ATTRIBUTE_SPACE]["logged image stream"].log(f)

        # artifact
        text_file = neptune.types.File(self.text_file_path)
        self.exp[ARTIFACT_ATTRIBUTE_SPACE]["assigned file"] = text_file
        # self.exp[ARTIFACT_ATTRIBUTE_SPACE]['logged file'].log(text_file)  # wrong type
        with open(self.text_file_path, mode="r") as f:
            self.exp[ARTIFACT_ATTRIBUTE_SPACE]["assigned file stream"] = f
            self.exp[ARTIFACT_ATTRIBUTE_SPACE]["logged file stream"].log(f)
Пример #5
0
    def test_assign_content(self):
        # given
        wait = self._random_wait()
        path = self._random_path()
        op_processor = MagicMock()
        exp = self._create_run(processor=op_processor)
        attr = FileSeries(exp, path)

        file = File.as_image(numpy.random.rand(10, 10) * 255)

        # when
        attr.assign([file], wait=wait)

        # then
        op_processor.enqueue_operation.assert_has_calls([
            call(ClearImageLog(path), False),
            call(
                LogImages(
                    path,
                    [
                        LogImages.ValueType(
                            ImageValue(base64_encode(file.content), None,
                                       None),
                            None,
                            self._now(),
                        )
                    ],
                ),
                wait,
            ),
        ])
Пример #6
0
    def test_log_content(self):
        # given
        wait = self._random_wait()
        path = self._random_path()
        op_processor = MagicMock()
        exp = self._create_run(processor=op_processor)
        attr = FileSeries(exp, path)

        file = File.as_image(numpy.random.rand(10, 10) * 255)

        # when
        attr.log(
            file,
            step=3,
            timestamp=self._now(),
            wait=wait,
            name="nazwa",
            description="opis",
        )

        # then
        op_processor.enqueue_operation.assert_called_once_with(
            LogImages(
                path,
                [
                    LogImages.ValueType(
                        ImageValue(base64_encode(file.content), "nazwa",
                                   "opis"),
                        3,
                        self._now(),
                    )
                ],
            ),
            wait,
        )
    def validation_step(self, batch, batch_idx):
        if batch_idx == 0:
            # Plot example
            model_output = self(batch)
            fig = plot_example(batch, model_output)
            self.logger.experiment['validation/plot'].log(File.as_image(fig))

        return self._training_or_validation_step(batch, is_train_step=False)
Пример #8
0
 def test_log(self):
     exp = init(mode="debug", flush_period=0.5)
     exp["some/num/val"].log(5)
     exp["some/str/val"].log("some text")
     exp["some/img/val"].log(
         FileVal.as_image(PIL.Image.new("RGB", (60, 30), color="red")))
     exp["some/img/val"].log(PIL.Image.new("RGB", (60, 30), color="red"))
     self.assertEqual(exp["some"]["num"]["val"].fetch_last(), 5)
     self.assertEqual(exp["some"]["str"]["val"].fetch_last(), "some text")
     self.assertIsInstance(exp.get_structure()["some"]["img"]["val"],
                           FileSeries)
Пример #9
0
    def test_as_image(self):
        # given
        image_array = numpy.random.rand(10, 10) * 255
        expected_image = Image.fromarray(image_array.astype(numpy.uint8))

        # when
        file = File.as_image(expected_image)

        # then
        self.assertEqual(file.extension, "png")
        self.assertEqual(file.content, _get_pil_image_data(expected_image))
    def validation_step(self, batch, batch_idx):
        if batch_idx == 0:
            # Plot example
            model_output = self(batch)
            fig = plot_example(batch,
                               model_output,
                               history_len=params['history_len'],
                               forecast_len=params['forecast_len'],
                               nwp_channels=params['nwp_channels'])
            self.logger.experiment['validation/plot'].log(File.as_image(fig))

        return self._training_or_validation_step(batch, is_train_step=False)
Пример #11
0
def plot_images_on_weblogger(dataset_name, stats, images, labels, more, log_text, weblogger=2):
    plot_images = images[0:np.max((4, len(images)))]
    if labels is None:
        labels = np.repeat('', len(plot_images))
    labels = labels[0:np.max((4, len(labels)))]
    add_text = [''] * len(labels)
    if isinstance(more, dict) and 'image_name' in list(more.keys()):
        add_text = more['image_name']
    metric_str = 'Debug/{} example images: [{}]'.format(log_text, dataset_name)

    if isinstance(weblogger, neptune.run.Run):
        [weblogger[metric_str].log
                           (File.as_image(convert_normalized_tensor_to_plottable_array(im, stats['mean'], stats['std'], text=f'{lb}' + os.path.splitext(n)[0])/255))
         for im, lb, n in zip(plot_images, labels, add_text)]
Пример #12
0
    def log_series(self):
        # floats
        self.exp[LOG_ATTRIBUTE_SPACE]["m1"].log(1)
        self.exp[LOG_ATTRIBUTE_SPACE]["m1"].log(2)
        self.exp[LOG_ATTRIBUTE_SPACE]["m1"].log(3)
        self.exp[LOG_ATTRIBUTE_SPACE]["m1"].log(2)
        self.exp[LOG_ATTRIBUTE_SPACE]["nested"]["m1"].log(1)

        # texts
        self.exp[LOG_ATTRIBUTE_SPACE]["m2"].log("a")
        self.exp[LOG_ATTRIBUTE_SPACE]["m2"].log("b")
        self.exp[LOG_ATTRIBUTE_SPACE]["m2"].log("c")

        # images
        im_frame = Image.open(self.img_path)
        g_img = File.as_image(im_frame)
        self.exp[LOG_ATTRIBUTE_SPACE]["g_img"].log(g_img)
Пример #13
0
    def test_assign_series(self):
        exp = init(mode="debug", flush_period=0.5)
        exp["some/num/val"].assign(FloatSeriesVal([1, 2, 0, 10]))
        exp["some/str/val"].assign(StringSeriesVal(["text1", "text2"]),
                                   wait=True)
        exp["some/img/val"].assign(
            FileSeriesVal([
                FileVal.as_image(PIL.Image.new("RGB", (10, 15), color="red"))
            ]))
        self.assertEqual(exp["some"]["num"]["val"].fetch_last(), 10)
        self.assertEqual(exp["some"]["str"]["val"].fetch_last(), "text2")
        self.assertIsInstance(exp.get_structure()["some"]["img"]["val"],
                              FileSeries)

        exp["some/num/val"].assign(FloatSeriesVal([122, 543, 2, 5]))
        exp["some/str/val"].assign(StringSeriesVal(
            ["other 1", "other 2", "other 3"]),
                                   wait=True)
        self.assertEqual(exp["some"]["num"]["val"].fetch_last(), 5)
        self.assertEqual(exp["some"]["str"]["val"].fetch_last(), "other 3")
Пример #14
0
    def test_log_path(self):
        # given
        wait = self._random_wait()
        path = self._random_path()
        op_processor = MagicMock()
        exp = self._create_run(processor=op_processor)
        attr = FileSeries(exp, path)

        file = File.as_image(numpy.random.rand(10, 10) * 255)
        with create_file(file.content, binary_mode=True) as tmp_filename:
            saved_file = File(tmp_filename)

            # when
            attr.log(
                saved_file,
                step=3,
                timestamp=self._now(),
                wait=wait,
                description="something",
            )

            # then
            op_processor.enqueue_operation.assert_called_once_with(
                LogImages(
                    path,
                    [
                        LogImages.ValueType(
                            ImageValue(base64_encode(file.content), None,
                                       "something"),
                            3,
                            self._now(),
                        )
                    ],
                ),
                wait,
            )