Пример #1
0
class GPU(Backend):
    """
    Sets up a NervanaGPU based backend for matrix operations.
    Note that some functions defined in the generic Backend class such as are
    cross-map pooling and normalization and adaDelta are not implemented for
    this backend.
    """
    default_dtype = np.float32

    def __init__(self, rng_seed, stochastic_round=False, device_id=0):
        self.ng = NervanaGPU(stochastic_round=stochastic_round)
        logger.info("Initialized NervanaGPU with stochastic_round=%s",
                    stochastic_round)
        self.rng_seed = rng_seed
        self.rng_init()
        self.device_id = device_id if device_id is not None else 0

    def __getstate__(self):
        """
        Defines what and how we go about serializing an instance of this class.

        Returns:
            self.__dict__: The full contents of the backend class instance,
                           except for the mem_pool which is on device and
                           cannot be serialized.
        """
        if hasattr(self, 'mem_pool') and self.mem_pool is not None:
            self.mem_pool_pickle = {'shape': self.mem_pool.shape,
                                    'dtype': np.float32}
            self.mem_pool = None

        return self.__dict__

    def __setstate__(self, state):
        """
        Defines how we go about deserializing into an instance of this class.

        Arguments:
            self.__dict__: The full contents of the backend class instance,
                           except for the mem_pool which is on device and
                           cannot be serialized.
        """
        self.__dict__.update(state)
        self.mem_pool = self.ng.empty(self.mem_pool_pickle['shape'],
                                      dtype=self.mem_pool_pickle['dtype'])

    def init_mempool(self, shape, dtype=default_dtype):
        """
        Allocates a memory pool for temporary storage
        """
        self.mem_pool = self.ng.empty(shape, dtype=dtype)

    def alloc_host_mem(self, shape, dtype):
        return drv.pagelocked_empty(shape, dtype, order="C", mem_flags=0)

    def create_stream(self):
        return drv.Stream()

    def async_copy(self, dest, src, stream=None):
        drv.memcpy_htod_async(dest.gpudata, src, stream)

    def rng_init(self):
        """
        Initialize and seed the pseudo random number genrator. Random numbers
        are generated on the host using numpy, then transfered to device.
        """
        seed = None
        if 'rng_seed' in self.__dict__:
            seed = self.rng_seed
            logger.info("Seeding random number generator with: %s", str(seed))
        np.random.seed(seed)

    def flop_timing_init(self, decorate_fc, decorate_conv, decorate_ew):
        """
        Initialize FLOP timing.  Wraps the specified MOP calls via a decorator
        to record elapsed time and number of operations.

        Arguments:
           decorate_fc (list): string giving the function names of fully
                               connected layer forward/backward/update calls
                               to time.
           decorate_conv (list): string giving the function names of
                                 convolutional layer forward/backward/update
                                 calls to time.
           decorate_ew (list): string giving the function names of element-wise
                               calls to time.

        Notes:
            Must be called prior to first flop_timing_start call
        """
        self.start = drv.Event()
        self.end = drv.Event()
        self.flop_timer = FlopsDecorator(self)
        self.flop_timer.decorate(decorate_fc=decorate_fc,
                                 decorate_conv=decorate_conv,
                                 decorate_ew=decorate_ew)

    def flop_timinig_start(self):
        """
        Start a new FLOP timer.
        Returns:
            None: dummy value (not used)
        """
        return self.start.record()

    def flop_timing_finish(self, start_time):
        """
        Complete current FLOP timing.

        Arguments:
            start_time (unused): ignored.

        Returns:
            float: elapsed time in seconds since prior flop_timing_start call.
        """
        self.end.record()
        self.end.synchronize()
        return self.end.time_since(self.start)

    def uniform(self, low=0.0, high=1.0, shape=1, dtype=default_dtype,
                persist_values=True, name=None, allocator=drv.mem_alloc):
        """
        generate numpy random number and convert to a GPUTensor.
        If called with dype=None it will probably explode
        """
        ary = np.random.uniform(low, high, shape)
        return GPUTensor(ary.shape, dtype, allocator=allocator, name=name,
                         rounding=self.ng.round_mode).set(ary)

    def normal(self, loc=0.0, scale=1.0, size=1, dtype=default_dtype,
               persist_values=True, name=None, allocator=drv.mem_alloc):
        """
        Gaussian/Normal random number sample generation
        """
        ary = np.random.normal(loc, scale, size)
        return GPUTensor(ary.shape, dtype, allocator=allocator, name=name,
                         rounding=self.ng.round_mode).set(ary)

    def fprop_fc(self, out, inputs, weights, layer=None):
        """
        Forward propagate the inputs of a fully connected network layer to
        produce output pre-activations (ready for transformation by an
        activation function).

        Arguments:
            out (GPUTensor): Where to store the forward propagated results.
            inputs (GPUTensor): Will be either the dataset input values (first
                                layer), or the outputs from the previous layer.
            weights (GPUTensor): The weight coefficient values for this layer.
            layer (Layer): The layer object.
        """
        self.ng.dot(weights, inputs, out)

    def bprop_fc(self, out, weights, deltas, layer=None):
        """
        Backward propagate the error through a fully connected network layer.

        Arguments:
            out (GPUTensor): Where to store the backward propagated errors.
            weights (GPUTensor): The weight coefficient values for this layer.
            deltas (GPUTensor): The error values for this layer
            layer (Layer): The layer object.
        """
        self.ng.dot(weights.T, deltas, out)

    def update_fc(self, out, inputs, deltas, layer=None):
        """
        Compute the updated gradient for a fully connected network layer.

        Arguments:
            out (GPUTensor): Where to store the updated gradient value.
            inputs (GPUTensor): Will be either the dataset input values (first
                                layer), or the outputs from the previous layer.
            deltas (GPUTensor): The error values for this layer
            layer (Layer): The layer object.
        """
        self.ng.dot(deltas, inputs.T, out)

    def fprop_conv(self, out, inputs, weights, ofmshape, ofmsize, ofmlocs,
                   ifmshape, links, nifm, padding, stride, ngroups, fpropbuf,
                   local=False):
        """
        Forward propagate the inputs of a convolutional network layer to
        produce output pre-activations (ready for transformation by an
        activation function).

        Arguments:
            out (GPUTensor): Where to store the forward propagated results.
            inputs (GPUTensor): Will be either the dataset input values (first
                             layer), or the outputs from the previous layer.
            weights (GPUTensor): The weight coefficient values for this layer.
            ofmshape (tuple): Dimensions of each output feature map (typically
                              number of height and width neurons).
            ofmsize (int): Total size of each output feature map.
            ofmlocs (GPUTensor): Indices giving the location of each element
                                  in each output feature map stored in out.
            ifmshape (tuple): Dimensions of each input feature map (typically
                              number of height and width neurons).  For this
                              backend we expect these values to be square.
            links (GPUTensor): Input receptive field indices.
            nifm (int): Total number of input feature maps.
            padding (int): Number of additional elements to include along each
                           dimension of each local receptive field during the
                           convolution operation.
            stride (int): Number of neurons to shift the filter at each step.
            ngroups (int): Number of groups.
            fpropbuf (GPUTensor): Temporary storage buffer used to hold the
                                  convolved outputs for a single receptive
                                  field.  Not used for this backend.
            local (bool, optional): Whether to do local filtering (True) or
                                    convolution (False, the default)
        """

        '''
        N: Number of images in mini-batch
        C: Number of input feature maps
        K: Number of output feature maps

        D: Depth  of input image
        H: Height of input image
        W: Width  of input image

        T: Depth  of filter kernel
        R: Height of filter kernel
        S: Width  of filter kernel
        '''
        self.ng.fprop_conv(layer=fpropbuf, I=inputs, F=weights, O=out,
                           alpha=1.0, repeat=1)

    def bprop_conv(self, out, weights, deltas, ofmshape, ofmsize, ofmlocs,
                   ifmshape, links, padding, stride, nifm, ngroups, bpropbuf,
                   local=False):
        """
        Backward propagate the error through a convolutional network layer.

        Arguments:
            out (GPUTensor): Where to store the backward propagated errors.
            weights (GPUTensor): The weight coefficient values for this layer.
            deltas (GPUTensor): The error values for this layer
            ofmshape (tuple): Dimensions of each output feature map (typically
                              height and width).
            ofmsize (int): Total size of each output feature map.
            ofmlocs (GPUTensor): Indices giving the location of each element in
                                 each output feature map stored in out.
            ifmshape (tuple): Dimensions of each input feature map (typically
                              height and width).
            links (GPUTensor): Input receptive field indices.
            nifm (int): Total number of input feature maps.
            padding (int): Number of additional elements to include along each
                           dimension of each local receptive field during the
                           convolution operation.
            stride (int): Number of neurons to shift the filter at each step.
            ngroups (int): Number of groups.
            bpropbuf (GPUTensor): Temporary storage buffer used to hold the
                                  backpropagated error for a single receptive
                                  field
            local (bool, optional): Whether to do local filtering (True) or
                                    convolution (False, the default)
        """
        self.ng.bprop_conv(layer=bpropbuf, F=weights, E=deltas, grad_I=out,
                           alpha=1.0, repeat=1)

    def update_conv(self, out, inputs, weights, deltas, ofmshape, ofmsize,
                    ofmlocs, ifmshape, links, nifm, padding, stride, ngroups,
                    fwidth, updatebuf, local=False, layer=None):
        """
        Compute the updated gradient for a convolutional network layer.

        Arguments:
            out (GPUTensor): Where to store the updated gradient value.
            inputs (GPUTensor): Will be either the dataset input values (first
                                layer), or the outputs from the previous layer.
            weights (GPUTensor): The weight coefficient values for this layer.
            deltas (GPUTensor): The error values for this layer
            ofmshape (tuple): Dimensions of each output feature map (typically
                              height and width).
            ofmsize (int): Total size of each output feature map.
            ofmlocs (GPUTensor): Indices giving the location of each element in
                                 each output feature map stored in out.
            ifmshape (tuple): Dimensions of each input feature map (typically
                              height and width).
            links (GPUTensor): Input receptive field indices.
            nifm (int): Total number of input feature maps.
            padding (int): Number of additional elements to include along each
                           dimension of each local receptive field during the
                           convolution operation.
            stride (int): Number of neurons to shift the filter at each step.
            ngroups (int): Number of groups.
            fwidth (int): Filter width.
            updatebuf (GPUTensor): Temporary storage buffer used to hold the
                                   updated gradient for a single receptive
                                   field
            local (bool, optional): Whether to do local filtering (True) or
                                    convolution (False, the default)
            layer (Layer): The layer object.
        """
        self.ng.update_conv(layer=updatebuf, I=inputs, E=deltas, grad_F=out,
                            alpha=1.0, repeat=1)

    def fprop_pool(self, out, inputs, op, ofmshape, ofmsize, ofmlocs, fshape,
                   ifmshape, links, nifm, padding, stride, fpropbuf):
        """
        Forward propagate the inputs of a Pooling network layer to
        produce output pre-activations (ready for transformation by an
        activation function).

        Arguments:
            out (GPUTensor): Where to store the forward propagated results.
            inputs (GPUTensor): Will be either the dataset input values (first
                                layer), or the outputs from the previous layer.
            op (string): The type of pooling operation to apply.  We support
                         "max", "avg", "l2" currently.
            ofmshape (tuple): Dimensions of each output feature map (typically
                              number of height and width neurons).
            ofmsize (int): Total size of each output feature map.
            ofmlocs (GPUTensor): Indices giving the location of each element in
                                 each output feature map stored in out.
            fshape (tuple): Dimensions of each filter (typically height and
                            width).
            ifmshape (tuple): Dimensions of each input feature map (typically
                              number of height and width neurons).
            links (GPUTensor): Input receptive field indices.
            nifm (int): Total number of input feature maps.
            padding (int): Number of additional elements to include along each
                           dimension of each local receptive field during the
                           pooling operation.
            stride (int): Number of neurons to shift the filter at each step.
            fpropbuf (GPUTensor): Temporary storage buffer used to hold the
                                  pooled outputs for a single receptive field.
        """
        op = op.lower()
        if op == "max":
            self.ng.fprop_pool(layer=fpropbuf, I=inputs, O=out, repeat=1)
        else:
            raise AttributeError("unexpected pooling op type: %s", op)

    def bprop_pool(self, out, fouts, inputs, deltas, op, ofmshape, ofmsize,
                   ofmlocs, fshape, fpsize, ifmshape, links, nifm, padding,
                   stride, bpropbuf):
        """
        Backward propagate the error through a pooling network layer.

        Arguments:
            out (GPUTensor): Where to store the backward propagated errors.
            fouts (GPUTensor): Forward propagated outputs from the previous
                               layer.
            inputs (GPUTensor): Will be either the dataset input values (first
                                layer), or the outputs from the previous layer.
            deltas (GPUTensor): The error values for this layer
            op (string): The type of pooling operation to apply.  We support
                         "max", "avg", "l2" currently.
            ofmshape (tuple): Dimensions of each output feature map (typically
                              height and width).
            ofmsize (int): Total size of each output feature map.
            ofmlocs (GPUTensor): Indices giving the location of each element in
                              each output feature map stored in out.
            fshape (tuple): Dimensions of each filter (typically height and
                            width).
            fpsize (int): The size of each filter.
            ifmshape (tuple): Dimensions of each input feature map (typically
                              height and width).
            links (GPUTensor): Input receptive field indices.
            nifm (int): Total number of input feature maps.
            padding (int): Number of additional elements to include along each
                           dimension of each local receptive field during the
                           pooling operation.
            stride (int): Number of neurons to shift the filter at each step.
            bpropbuf (GPUTensor): Temporary storage buffer used to hold the
                                  backpropagated error for a single receptive
                                  field
        """
        op = op.lower()
        if op == "max":
            self.ng.bprop_pool(layer=bpropbuf, I=inputs, E=deltas, grad_I=out,
                               repeat=1)
        else:
            raise AttributeError("unexpected pooling op type: %s", op)

    def logistic(self, x, out):
        """
        Logistic sigmoid nonlinearity, 1/(1+exp(-x))

        Arguments:
            x (GPUTensor): Input tensor
            out (GPUTensor): Output tensor

        """
        self.ng.sig(x, out=out)

        return out

    def rectlin(self, x, out):
        """
        Rectified Linear nonlinearity

        Arguments:
            x (GPUTensor): Input tensor
            out (GPUTensor): Output tensor

        """
        self.ng.maximum(x, 0., out=out)
        return out

    def rectleaky(self, x, slope, out):
        out[:] = self.ng.maximum(x, x*slope)

    def rectleaky_derivative(self, x, slope, out):
        out[:] = self.ng.greater(x, 0) * (1.0 - slope) + slope

    def sum(self, tsr, axes, out):
        """
        Sum

        Arguments:
            tsr  (GPUTensor): Input tensor
            axes (int): Axis along which the reduction is performed. If axes
                        is None,  the tensor is flattened and reduced over
                        both dimensions.
            out (GPUTensor): Output tensor
        """
        if axes is None:
            sze = tsr.shape[0]*tsr.shape[1]
            self.ng.sum(tsr.reshape(sze, 1), axis=0, out=out)
        else:
            self.ng.sum(tsr, axis=axes, out=out)
        return out

    def mean(self, tsr, axes, out):
        """
        Calculates the arithmetic mean of the elements along the specified
        axes.

        Arguments:
            tsr (GPUTensor): Input tensor
            axes (int): Axis along which the reduction is performed. If axes
                        is None,  the tensor is flattened and reduced over
                        both dimensions.
            out (GPUTensor): Output tensor
        """
        if axes is None:
            sze = tsr.shape[0]*tsr.shape[1]
            self.ng.mean(tsr.reshape(sze, 1), axis=0, out=out)
        else:
            self.ng.mean(tsr, axis=axes, out=out)
        return out

    def min(self, tsr, axes, out):
        """
        Calculates the minimum of the elements along the specified
        axes.

        Arguments:
            tsr (GPUTensor): Input tensor
            axes (int): Axis along which the reduction is performed. If axes
                        is None,  the tensor is flattened and reduced over
                        both dimensions.
            out (GPUTensor): Output tensor
        """
        if axes is None:
            sze = tsr.shape[0]*tsr.shape[1]
            self.ng.min(tsr.reshape(sze, 1), axis=0, out=out)
        else:
            self.ng.min(tsr, axis=axes, out=out)
        return out

    def max(self, tsr, axes, out):
        """
        Calculates the maximum of the elements along the specified
        axes.

        Arguments:
            tsr (GPUTensor): Input tensor
            axes (int): Axis along which the reduction is performed. If axes
                        is None,  the tensor is flattened and reduced over
                        both dimensions.
            out (GPUTensor): Output tensor
        """
        if axes is None:
            sze = tsr.shape[0]*tsr.shape[1]
            self.ng.max(tsr.reshape(sze, 1), axis=0, out=out)
        else:
            self.ng.max(tsr, axis=axes, out=out)
        return out

    def variance(self, tsr, axes, out, mean=None):
        """
        Calculates the variance of the elements along the specified
        axes.

        Arguments:
            tsr (GPUTensor): the tensor on which to compute the variance
            axes (int, list, optional): the dimension(s) along which to
                                        variance.  If set to None, we will
                                        variance over all dimensions.
            out (GPUTensor): where the result will be stored.
            mean (GPUTensor): the tensor containing mean of tsr

        Returns:
            GPUTensor: reference to out
        """
        if mean is None:
            logger.error("GPUTensor requires mean to be specified.")
            raise ValueError("mean not specified")
        self.ng.mean(self.ng.square(tsr-mean),  axis=axes, out=out)
        return out

    def fabs(self, x, out):
        """
        Calculates absolute value of the elements in a tensor

        Arguments:
            x (GPUTensor): Input tensor
            out (GPUTensor): Output tensor

        Returns:
            GPUTensor: reference to out
        """
        self.ng.fabs(x, out=out)
        return out

    def sqrt(self, x, out):
        """
        Calculates square root of the elements in a tensor

        Arguments:
            x (GPUTensor): Input tensor
            out (GPUTensor): Output tensor

        Returns:
            GPUTensor: reference to out
        """
        self.ng.sqrt(x, out=out)
        return out

    def zeros(self, shape, dtype=default_dtype, persist_values=True):
        """
        Allocate a new GPUTensor and fill it with zeros.

        Arguments:
            shape (tupel): Shape of the desired GPUTensor
            dtype (dtype): Optional datatype
            persist_values (bool, optional): If set to True (the default), the
                                             values assigned to this Tensor
                                             will persist across multiple begin
                                             and end calls.  Setting to False
                                             may provide a performance increase
                                             if values do not need to be
                                             maintained across such calls

        Returns:
            GPUTensor: output
        """
        return self.ng.zeros(shape, dtype=dtype)

    def ones(self, shape, dtype=default_dtype, persist_values=True):
        """
        Allocate a new GPUTensor and fill it with ones.

        Arguments:
            shape (tupel): Shape of the desired GPUTensor
            dtype (dtype): Optional datatype
            persist_values (bool, optional): If set to True (the default), the
                                             values assigned to this Tensor
                                             will persist across multiple begin
                                             and end calls.  Setting to False
                                             may provide a performance increase
                                             if values do not need to be
                                             maintained across such calls

        Returns:
            GPUTensor: output
        """
        return self.ng.ones(shape, dtype=dtype)

    def empty(self, shape, dtype=default_dtype, persist_values=True):
        """
        Allocate a new GPUTensor.

        Arguments:
            shape (tupel): Shape of the desired GPUTensor
            dtype (dtype): Optional datatype
            persist_values (bool, optional): If set to True (the default), the
                                             values assigned to this Tensor
                                             will persist across multiple begin
                                             and end calls.  Setting to False
                                             may provide a performance increase
                                             if values do not need to be
                                             maintained across such calls

        Returns:
            GPUTensor: output
        """
        return self.ng.empty(shape, dtype=dtype)

    def array(self, ary, dtype=default_dtype, persist_values=True, name=None,
              allocator=drv.mem_alloc):
        """
        Allocate a new GPUTensor and fill it with supplied numpy array.

        Arguments:
            ary (ndarray): Numpy array with source data
            dtype (dtype, optional): Optional datatype
            persist_values (bool, optional): If set to True (the default), the
                                             values assigned to this Tensor
                                             will persist across multiple begin
                                             and end calls.  Setting to False
                                             may provide a performance increase
                                             if values do not need to be
                                             maintained across such calls
            name (string): Name for the GPUTensor
            allocator (pycuda): Pycuda memory allocator

        Returns:
            GPUTensor: output
        """
        return GPUTensor(ary.shape, dtype, allocator=allocator, name=name,
                         rounding=self.ng.round_mode).set(ary)

    def add(self, left, right, out):
        """
        Elementwise addition

        Arguments:
            left (GPUTensor, numeric): left-hand side operand.
            right (GPUTensor, numeric): right-hand side operand.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.add(left, right, out=out)
        return out

    def subtract(self, left, right, out):
        """
        Elementwise subtraction

        Arguments:
            left (GPUTensor, numeric): left-hand side operand.
            right (GPUTensor, numeric): right-hand side operand.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.subtract(left, right, out=out)
        return out

    def multiply(self, left, right, out):
        """
        Elementwise multiplication

        Arguments:
            left (GPUTensor, numeric): left-hand side operand.
            right (GPUTensor, numeric): right-hand side operand.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.multiply(left, right, out=out)
        return out

    def divide(self, left, right, out):
        """
        Elementwise division

        Arguments:
            left (GPUTensor, numeric): left-hand side operand.
            right (GPUTensor, numeric): right-hand side operand.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.divide(left, right, out=out)
        return out

    def greater(self, left, right, out):
        """
        Elementwise greater than testing

        Arguments:
            left (GPUTensor, numeric): left-hand side operand.
            right (GPUTensor, numeric): right-hand side operand.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.greater(left, right, out=out)
        return out

    def equal(self, left, right, out):
        """
        Performs element-wise equality testing on each element of left and
        right, storing the result in out.  Each operand is assumed to be the
        same shape (or broadcastable as such).

        Arguments:
            left (GPUTensor, numeric): left-hand side operand.
            right (GPUTensor, numeric): right-hand side operand.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.equal(left, right, out=out)
        return out

    def not_equal(self, left, right, out):
        """
        Elementwise not equal testing

        Arguments:
            left (GPUTensor, numeric): left-hand side operand.
            right (GPUTensor, numeric): right-hand side operand.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.not_equal(left, right, out=out)
        return out

    def clip(self, a, a_min, a_max, out):
        """
        Elementwise clipping between a range of specified values

        Arguments:
            a (GPUTensor): input tensor.
            a_min (float): floor value.
            a_max (float): ceiling value.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.clip(a, a_min, a_max, out=out)
        return out

    def log(self, a, out):
        """
        Elementwise base-e logarithm

        Arguments:
            a (GPUTensor): input tensor.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.log(a, out=out)
        return out

    def tanh(self, a, out):
        """
        Elementwise tanh

        Arguments:
            a (GPUTensor): input tensor.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.tanh(a, out=out)
        return out

    def argmax(self, a, out, axis=0):
        """
        Calculates the indices of the maximal element value along the specified
        axis.  If multiple elements contain the maximum, only the elements of
        the first are returned.

        Arguments:
            tsr (GPUTensor): The GPUTensor on which to find the maximum indices
            axis (int): The dimension along which to find the maximum.  If set
                        to None, find the overall maximum index of a flattened
                        representation of tsr.
            out (GPUTensor): Where to store the result.  Should be of the
                             appropriate type and expected shape

        Returns:
            GPUTensor: reference to out
        """
        self.ng.argmax(a, out=out, axis=axis)
        return out

    def softmax(self, x, out):
        """
        Softmax nonlinearity. Computes exp(x-max(x)) / sum_i exp(x_i-max(x_i))

        Arguments:
            x (GPUTensor): input tensor.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        out[:] = (self.ng.reciprocal(self.ng.sum(
                  self.ng.exp(x - self.ng.max(x, axis=0)), axis=0)) *
                  self.ng.exp(x - self.ng.max(x, axis=0)))
        return out

    def softmax_gradient(self, y, err, out):
        """
        Gradient of the softmax nonlinearity.

        Arguments:
            y (GPUTensor): input tensor.
            err (GPUTensor): backpropagated error.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        raise NotImplementedError("Softmax gradient should use shortcut")
        return out

    def make_binary_mask(self, tsr, keepthresh=0.5, dtype=default_dtype):
        """
        Create a binary mask for dropout layers.

        Arguments:
            tsr (GPUTensor): Output tensor
            keepthresh (float): fraction of ones
        """
        self.ng.dropout(keep=keepthresh, out=tsr)

    def gdm_compound(self, ps_item, us_item, vs_item, momentum_coef,
                     learning_rate, epoch):
        """
        Perform gradient descent update with momentum.

        Arguments:
            ps_item (GPUTensor): parameter tensor (e.g. a weight matrix)
            us_item (GPUTensor): update tensor, contains gradient wrt. weights
            vs_item (GPUTensor): velocity tensor.
            momentum_coef (float): momentum coefficient.
            learning_rate (float): learning rate.
            epoch (int): epoch (used in conjunction with diagnostics).

        Outputs are written to vs_item (updated velocity)
        and ps_item (updated weights)
        """
        vs_item[:] = vs_item * momentum_coef - us_item * learning_rate
        ps_item[:] = ps_item + vs_item

    def gdmwd_compound(self, ps_item, us_item, vs_item, momentum_coef,
                       learning_rate, wd, epoch):
        """
        Perform gradient descent update with momentum and weight decay.

        Arguments:
            ps_item (GPUTensor): parameter tensor (e.g. a weight matrix)
            us_item (GPUTensor): update tensor, contains gradient wrt. weights
            vs_item (GPUTensor): velocity tensor.
            momentum_coef (float): momentum coefficient.
            learning_rate (float): learning rate.
            wd (float): weight decay parameter.
            epoch (int): epoch (used in conjunction with diagnostics).

        Outputs:
            ps_item, the updated weights.
            vs_item, the updated velocity.
            us_item, used as a temp buffer.
        """
        vs_item[:] = vs_item * momentum_coef - us_item * \
            learning_rate - learning_rate * wd * ps_item
        ps_item[:] = ps_item + vs_item

    def ada_update(self, ps_item, us_item, gs_item, ds_item, ls_item, ss_item,
                   rho, epsilon):
        """
        Update rule for AdaDelta (Zeiler, http://arxiv.org/abs/1212.5701)

        Arguments:
            ps_item: weight / parameter (will be updated)
            us_item: update
            gs_item: expected value of Gradient Squared (will be updated)
            ds_item: expected value of Delta Squared (will be updated)
            ls_item: learning rate (will be updated)
            ss_item: Scratch Space
            rho: decay constant (determines window size)
            epsilon: small positive constant for numerical stability
        """
        # Accumulate E[Grad^2]
        gs_item[:] = gs_item * rho + (1.0 - rho) * us_item * us_item

        # Calculate Updates
        ls_item[:] = self.ng.sqrt((ds_item + epsilon) /
                                  (gs_item + epsilon)) * (-1.0) * us_item

        # Accumulate E[Delt^2]
        ds_item[:] = ds_item * rho + (1.0 - rho) * ls_item * ls_item

        # Final update to the params
        ps_item[:] = ps_item + ls_item

    def rms_update(self, params, updates, run_squares, velocity, scratch_space,
                   gamma, epsilon, learning_rate, momentum_coef):

        # Update running squares
        run_squares[:] = gamma * run_squares + (1. - gamma) * updates * updates

        # Now scale the gradient by lr / rms(grad) (with a epsilon term for
        # stability) and use it to update the params
        if momentum_coef == 0:
            params[:] = params - learning_rate * updates * self.ng.reciprocal(
                self.ng.sqrt(run_squares) + epsilon)
        else:
            velocity[:] = velocity * momentum_coef - \
                learning_rate * updates * \
                self.ng.reciprocal(self.ng.sqrt(run_squares) + epsilon)
            params[:] = params + velocity

    def fprop_bn_compound(self, inputs, beta, gamma, eps, xvar, xhat, out):
        """
        Batch normalization forward pass, compounded to run in 3 kernel calls.

        Arguments:
            inputs: input data to be normalized
            beta: location parameter
            gamma: scale parameter
            eps: small constant for numerical stability
            xvar: variance (updated)
            xhat: normalized input (updated)
            out: normalized and rescaled input (updated)
        """
        xvar[:] = self.ng.reciprocal(self.ng.sqrt(self.ng.var(inputs, axis=1) +
                                                  eps))
        xhat[:] = xvar * (inputs - self.ng.mean(inputs, axis=1))
        out[:] = xhat * gamma + beta
        return out

    def bprop_bn_compound(self, xhat, error, xvar, gamma,
                          beta_updates, gamma_updates):
        """
        Batch normalization backward pass, compounded to run with 4 kernel
        calls.

        Arguments:
            xhat: normalized input data (updated)
            error: backpropagated deltas (updated)
            xvar: precomputed variance
            gamma: scale parameter
            beta_updates: gradient update for beta (updated)
            gamma_updates: gradient update for gamma (updated)
        """
        gamma_updates[:] = self.ng.sum(xhat * error, axis=1)
        beta_updates[:] = self.ng.sum(error, axis=1)
        xhat[:] = (xhat * gamma_updates + beta_updates) / float(xhat.shape[1])
        error[:] = xvar * gamma * (error - xhat)
Пример #2
0
                # otherwise copy
                else:
                    devA2 = ng.empty(dimA, dtype=np.float32)
                    devB2 = ng.empty(dimB, dtype=np.float32)
                    devA2[:] = devA1
                    devB2[:] = devB1

                devC2 = ng.empty(dimC, dtype=np.float32)
                devC2[:] = devC1

                if op[0] == 't': devA1, devA2 = devA1.T, devA2.T
                if op[1] == 't': devB1, devB2 = devB1.T, devB2.T

                ng.dot(devA1,
                       devB1,
                       devC1,
                       alpha=alpha,
                       beta=beta,
                       repeat=repeat)

                cublas_dot(devA2,
                           devB2,
                           devC2,
                           alpha=alpha,
                           beta=beta,
                           repeat=repeat)

                partial1 = ng.empty((devC1.shape[0], 1), dtype=np.float32)
                partial2 = partial1[0:1, 0:1]

                diff = ng.max(abs(devC2 - devC1),
                              partial=partial1,
Пример #3
0
                    cpuA = np.random.uniform(-1.0, 1.0,
                                             dimA).astype(np.float32)
                    cpuB = np.random.uniform(-1.0, 1.0,
                                             dimB).astype(np.float32)
                    #cpuB = np.identity(n, dtype=dtype)

                    devA = ng.array(cpuA, dtype=dtype)
                    devB = ng.array(cpuB, dtype=dtype)
                    devC = ng.empty(dimC, dtype=dtype)

                    #repeat = min(int(50.0 * 4096**3 / (m * n * k)), 1000)

                    if op[0] == 't': cpuA, devA = cpuA.T, devA.T
                    if op[1] == 't': cpuB, devB = cpuB.T, devB.T

                    ng.dot(devA, devB, devC, repeat=1)

                    #context.synchronize()

                    cpuC = np.dot(cpuA, cpuB)

                    cpuD = devC.get()
                    diff = np.absolute(cpuC - cpuD)
                    max_diff = diff.max()
                    print(max_diff, cpuD.max())
                    if max_diff > 0.1 or max_diff != max_diff:
                        #print(m, n, k, max_diff)
                        print(cpuD[::max(m // 16, 1), ::max(n // 16, 1)])
                        print(cpuC[::max(m // 16, 1), ::max(n // 16, 1)])
                        print(diff[::max(m // 16, 1), ::max(n // 16, 1)])
                        exit()
Пример #4
0
                devA2 = ng.empty(dimA, dtype=np.float32)
                devB2 = ng.empty(dimB, dtype=np.float32)
                devA2[:] = devA1
                devB2[:] = devB1

            devC2 = ng.empty(dimC, dtype=np.float32)

            if op[0] == 't': devA1, devA2 = devA1.T, devA2.T
            if op[1] == 't': devB1, devB2 = devB1.T, devB2.T

            glops16 = 0
            glops32 = 0
            glops64 = 0
            if op == "tn" and dtype is np.float16:
                # Experimental 128x16 gemm kernel
                glops16 = ng.dot(devA1, devB1, devC1, repeat=repeat, size=16)
            if op != 'nt':
                glops32 = ng.dot(devA1, devB1, devC1, repeat=repeat, size=32)
                glops64 = ng.dot(devA1, devB1, devC1, repeat=repeat, size=64)
            glops128 = ng.dot(devA1, devB1, devC1, repeat=repeat, size=128)

            glops = max(glops16, glops32, glops64, glops128)

            if glops16 == glops:
                fastest = 16
            elif glops32 == glops:
                fastest = 32
            elif glops64 == glops:
                fastest = 64
            else:
                fastest = 128
Пример #5
0
            if data_type == "All Ones":
                cpuA = np.ones(dimA, dtype=dtype).astype(np.float32)
                cpuB = np.ones(dimB, dtype=dtype).astype(np.float32)
                #cpuB = np.identity(n, dtype=np.float32)
            else:
                cpuA = np.random.uniform(-1.0, 1.0, dimA).astype(np.float32)
                cpuB = np.random.uniform(-1.0, 1.0, dimB).astype(np.float32)

            devA = ng.array(cpuA, dtype=dtype)
            devB = ng.array(cpuB, dtype=dtype)
            devC = ng.empty(dimC, dtype=dtype)

            if op[0] == 't': cpuA, devA = cpuA.T, devA.T
            if op[1] == 't': cpuB, devB = cpuB.T, devB.T

            ng.dot(devA, devB, devC, repeat=repeat)

            if cpu:

                cpuC = np.dot(cpuA, cpuB)

                cpuD = devC.get()
                diff = np.absolute(cpuC - cpuD)

                print diff.max()
                print cpuD[::max(m//4,1),::max(n//4,1)]
                print cpuC[::max(m//4,1),::max(n//4,1)]
                print diff[::max(m//4,1),::max(n//4,1)]

                # print cpuD
                # exit()
Пример #6
0
                                    devA2[:] = devA1
                                    devB2[:] = devB1

                                devC2    = ng.empty(dimC, dtype=np.float32)
                                # devC2    = devC2s.share(dimC, dtype=np.float32)
                                devC2[:] = devC1

                                if op[0] == 't': devA1, devA2 = devA1.T, devA2.T
                                if op[1] == 't': devB1, devB2 = devB1.T, devB2.T

                                for tile in (32,64,128):
                                    if op == 'nt' and tile != 128:
                                        continue
                                    try: 

                                        ng.dot(devA1, devB1, devC1, alpha=alpha, beta=beta, size=tile)
                                        context.synchronize()

                                        cublas_dot(devA2, devB2, devC2, alpha=alpha, beta=beta)

                                        partial1 = ng.empty((devC1.shape[0],1), dtype=np.float32)
                                        partial2 = partial1[0:1,0:1]

                                        if ng.min(ng.finite(devC1), partial=partial1, out=partial2).get()[0,0] == 0.0:
                                            print("Error: NaN KCN: (%d,%d,%d) ab: (%f,%f) dtype: %d" %
                                                  (K,C,N, alpha,beta, itemsize))
                                            exit()

                                        diff = ng.max(abs(devC2 - devC1), partial=partial1, out=partial2).get()[0,0]
                                        mean = ng.mean(abs(devC2), partial=partial1, out=partial2).get()[0,0]
                                        pctErr = 100 * diff / mean
Пример #7
0
                    cpuA = np.random.uniform(-1.0, 1.0, dimA).astype(np.float32)
                    cpuB = np.random.uniform(-1.0, 1.0, dimB).astype(np.float32)
                    # cpuB = np.identity(n, dtype=dtype)

                    devA = ng.array(cpuA, dtype=dtype)
                    devB = ng.array(cpuB, dtype=dtype)
                    devC = ng.empty(dimC, dtype=dtype)

                    # repeat = min(int(50.0 * 4096**3 / (m * n * k)), 1000)

                    if op[0] == "t":
                        cpuA, devA = cpuA.T, devA.T
                    if op[1] == "t":
                        cpuB, devB = cpuB.T, devB.T

                    ng.dot(devA, devB, devC, repeat=1)

                    # context.synchronize()

                    cpuC = np.dot(cpuA, cpuB)

                    cpuD = devC.get()
                    diff = np.absolute(cpuC - cpuD)
                    max_diff = diff.max()
                    print(max_diff, cpuD.max())
                    if max_diff > 0.1 or max_diff != max_diff:
                        # print(m, n, k, max_diff)
                        print(cpuD[:: max(m // 16, 1), :: max(n // 16, 1)])
                        print(cpuC[:: max(m // 16, 1), :: max(n // 16, 1)])
                        print(diff[:: max(m // 16, 1), :: max(n // 16, 1)])
                        exit()
Пример #8
0
                    devA2 = devA1
                    devB2 = devB1
                # otherwise copy
                else:
                    devA2 = ng.empty(dimA, dtype=np.float32)
                    devB2 = ng.empty(dimB, dtype=np.float32)
                    devA2[:] = devA1
                    devB2[:] = devB1

                devC2    = ng.empty(dimC, dtype=np.float32)
                devC2[:] = devC1

                if op[0] == 't': devA1, devA2 = devA1.T, devA2.T
                if op[1] == 't': devB1, devB2 = devB1.T, devB2.T

                ng.dot(devA1, devB1, devC1, alpha=alpha, beta=beta, repeat=repeat)

                cublas_dot(devA2, devB2, devC2, alpha=alpha, beta=beta, repeat=repeat)

                partial1 = ng.empty((devC1.shape[0],1), dtype=np.float32)
                partial2 = partial1[0:1,0:1]

                diff = ng.max(abs(devC2 - devC1), partial=partial1, out=partial2).get()[0,0]
                mean = ng.mean(abs(devC2), partial=partial1, out=partial2).get()[0,0]

                #if diff > .1:
                print("Error: %.3f%%" % (100 * diff / mean))

                print("--------------------------------------------------------------------------------")

cublas.cublasDestroy(handle)
Пример #9
0
                devA2 = ng.empty(dimA, dtype=np.float32)
                devB2 = ng.empty(dimB, dtype=np.float32)
                devA2[:] = devA1
                devB2[:] = devB1

            devC2 = ng.empty(dimC, dtype=np.float32)

            if op[0] == 't': devA1, devA2 = devA1.T, devA2.T
            if op[1] == 't': devB1, devB2 = devB1.T, devB2.T

            glops16 = 0
            glops32 = 0
            glops64 = 0
            if op == "tn" and dtype is np.float16:
                # Experimental 128x16 gemm kernel
                glops16 = ng.dot(devA1, devB1, devC1, repeat=repeat, size=16)
            if op != 'nt':
                glops32 = ng.dot(devA1, devB1, devC1, repeat=repeat, size=32)
                glops64 = ng.dot(devA1, devB1, devC1, repeat=repeat, size=64)
            glops128 = ng.dot(devA1, devB1, devC1, repeat=repeat, size=128)

            glops = max(glops16, glops32, glops64, glops128)

            if glops16 == glops:
                fastest = 16
            elif glops32 == glops:
                fastest = 32
            elif glops64 == glops:
                fastest = 64
            else:
                fastest = 128
Пример #10
0
class GPU(Backend):
    """
    Sets up a NervanaGPU based backend for matrix operations.
    Note that some functions defined in the generic Backend class such as are
    cross-map pooling and normalization and adaDelta are not implemented for
    this backend.
    """
    default_dtype = np.float32

    def __init__(self, rng_seed, stochastic_round=False, device_id=0):
        self.ng = NervanaGPU(stochastic_round=stochastic_round)
        logger.info("Initialized NervanaGPU with stochastic_round=%s",
                    stochastic_round)
        self.rng_seed = rng_seed
        self.rng_init()
        self.device_id = device_id if device_id is not None else 0

    def __getstate__(self):
        """
        Defines what and how we go about serializing an instance of this class.

        Returns:
            self.__dict__: The full contents of the backend class instance,
                           except for the mem_pool which is on device and
                           cannot be serialized.
        """
        if hasattr(self, 'mem_pool') and self.mem_pool is not None:
            self.mem_pool_pickle = {'shape': self.mem_pool.shape,
                                    'dtype': np.float32}
            self.mem_pool = None

        return self.__dict__

    def __setstate__(self, state):
        """
        Defines how we go about deserializing into an instance of this class.

        Arguments:
            self.__dict__: The full contents of the backend class instance,
                           except for the mem_pool which is on device and
                           cannot be serialized.
        """
        self.__dict__.update(state)
        self.mem_pool = self.ng.empty(self.mem_pool_pickle['shape'],
                                      dtype=self.mem_pool_pickle['dtype'])

    def init_mempool(self, shape, dtype=default_dtype):
        """
        Allocates a memory pool for temporary storage
        """
        self.mem_pool = self.ng.empty(shape, dtype=dtype)

    def alloc_host_mem(self, shape, dtype):
        return drv.pagelocked_empty(shape, dtype, order="C", mem_flags=0)

    def create_stream(self):
        return drv.Stream()

    def async_copy(self, dest, src, stream=None):
        drv.memcpy_htod_async(dest.gpudata, src, stream)

    def rng_init(self):
        """
        Initialize and seed the pseudo random number genrator. Random numbers
        are generated on the host using numpy, then transfered to device.
        """
        seed = None
        if 'rng_seed' in self.__dict__:
            seed = self.rng_seed
            logger.info("Seeding random number generator with: %s", str(seed))
        np.random.seed(seed)

    def flop_timing_init(self, decorate_fc, decorate_conv, decorate_ew):
        """
        Initialize FLOP timing.  Wraps the specified MOP calls via a decorator
        to record elapsed time and number of operations.

        Arguments:
           decorate_fc (list): string giving the function names of fully
                               connected layer forward/backward/update calls
                               to time.
           decorate_conv (list): string giving the function names of
                                 convolutional layer forward/backward/update
                                 calls to time.
           decorate_ew (list): string giving the function names of element-wise
                               calls to time.

        Notes:
            Must be called prior to first flop_timing_start call
        """
        self.start = drv.Event()
        self.end = drv.Event()
        self.flop_timer = FlopsDecorator(self)
        self.flop_timer.decorate(decorate_fc=decorate_fc,
                                 decorate_conv=decorate_conv,
                                 decorate_ew=decorate_ew)

    def flop_timinig_start(self):
        """
        Start a new FLOP timer.
        Returns:
            None: dummy value (not used)
        """
        return self.start.record()

    def flop_timing_finish(self, start_time):
        """
        Complete current FLOP timing.

        Arguments:
            start_time (unused): ignored.

        Returns:
            float: elapsed time in seconds since prior flop_timing_start call.
        """
        self.end.record()
        self.end.synchronize()
        return self.end.time_since(self.start)

    def uniform(self, low=0.0, high=1.0, shape=1, dtype=default_dtype,
                persist_values=True, name=None, allocator=drv.mem_alloc):
        """
        generate numpy random number and convert to a GPUTensor.
        If called with dype=None it will probably explode
        """
        ary = np.random.uniform(low, high, shape)
        return self.ng.array(ary, dtype=dtype, name=name)

    def normal(self, loc=0.0, scale=1.0, size=1, dtype=default_dtype,
               persist_values=True, name=None, allocator=drv.mem_alloc):
        """
        Gaussian/Normal random number sample generation
        """
        ary = np.random.normal(loc, scale, size)
        return self.ng.array(ary, dtype=dtype, name=name)

    def fprop_fc(self, out, inputs, weights, layer=None):
        """
        Forward propagate the inputs of a fully connected network layer to
        produce output pre-activations (ready for transformation by an
        activation function).

        Arguments:
            out (GPUTensor): Where to store the forward propagated results.
            inputs (GPUTensor): Will be either the dataset input values (first
                                layer), or the outputs from the previous layer.
            weights (GPUTensor): The weight coefficient values for this layer.
            layer (Layer): The layer object.
        """
        self.ng.dot(weights, inputs, out)

    def bprop_fc(self, out, weights, deltas, layer=None):
        """
        Backward propagate the error through a fully connected network layer.

        Arguments:
            out (GPUTensor): Where to store the backward propagated errors.
            weights (GPUTensor): The weight coefficient values for this layer.
            deltas (GPUTensor): The error values for this layer
            layer (Layer): The layer object.
        """
        self.ng.dot(weights.T, deltas, out)

    def update_fc(self, out, inputs, deltas, layer=None):
        """
        Compute the updated gradient for a fully connected network layer.

        Arguments:
            out (GPUTensor): Where to store the updated gradient value.
            inputs (GPUTensor): Will be either the dataset input values (first
                                layer), or the outputs from the previous layer.
            deltas (GPUTensor): The error values for this layer
            layer (Layer): The layer object.
        """
        self.ng.dot(deltas, inputs.T, out)

    def fprop_conv(self, out, inputs, weights, ofmshape, ofmsize, ofmlocs,
                   ifmshape, links, nifm, padding, stride, ngroups, fpropbuf,
                   local=False):
        """
        Forward propagate the inputs of a convolutional network layer to
        produce output pre-activations (ready for transformation by an
        activation function).

        Arguments:
            out (GPUTensor): Where to store the forward propagated results.
            inputs (GPUTensor): Will be either the dataset input values (first
                             layer), or the outputs from the previous layer.
            weights (GPUTensor): The weight coefficient values for this layer.
            ofmshape (tuple): Dimensions of each output feature map (typically
                              number of height and width neurons).
            ofmsize (int): Total size of each output feature map.
            ofmlocs (GPUTensor): Indices giving the location of each element
                                  in each output feature map stored in out.
            ifmshape (tuple): Dimensions of each input feature map (typically
                              number of height and width neurons).  For this
                              backend we expect these values to be square.
            links (GPUTensor): Input receptive field indices.
            nifm (int): Total number of input feature maps.
            padding (int): Number of additional elements to include along each
                           dimension of each local receptive field during the
                           convolution operation.
            stride (int): Number of neurons to shift the filter at each step.
            ngroups (int): Number of groups.
            fpropbuf (GPUTensor): Temporary storage buffer used to hold the
                                  convolved outputs for a single receptive
                                  field.  Not used for this backend.
            local (bool, optional): Whether to do local filtering (True) or
                                    convolution (False, the default)
        """

        '''
        N: Number of images in mini-batch
        C: Number of input feature maps
        K: Number of output feature maps

        D: Depth  of input image
        H: Height of input image
        W: Width  of input image

        T: Depth  of filter kernel
        R: Height of filter kernel
        S: Width  of filter kernel
        '''
        self.ng.fprop_conv(layer=fpropbuf, I=inputs, F=weights, O=out,
                           alpha=1.0, repeat=1)

    def bprop_conv(self, out, weights, deltas, ofmshape, ofmsize, ofmlocs,
                   ifmshape, links, padding, stride, nifm, ngroups, bpropbuf,
                   local=False):
        """
        Backward propagate the error through a convolutional network layer.

        Arguments:
            out (GPUTensor): Where to store the backward propagated errors.
            weights (GPUTensor): The weight coefficient values for this layer.
            deltas (GPUTensor): The error values for this layer
            ofmshape (tuple): Dimensions of each output feature map (typically
                              height and width).
            ofmsize (int): Total size of each output feature map.
            ofmlocs (GPUTensor): Indices giving the location of each element in
                                 each output feature map stored in out.
            ifmshape (tuple): Dimensions of each input feature map (typically
                              height and width).
            links (GPUTensor): Input receptive field indices.
            nifm (int): Total number of input feature maps.
            padding (int): Number of additional elements to include along each
                           dimension of each local receptive field during the
                           convolution operation.
            stride (int): Number of neurons to shift the filter at each step.
            ngroups (int): Number of groups.
            bpropbuf (GPUTensor): Temporary storage buffer used to hold the
                                  backpropagated error for a single receptive
                                  field
            local (bool, optional): Whether to do local filtering (True) or
                                    convolution (False, the default)
        """
        self.ng.bprop_conv(layer=bpropbuf, F=weights, E=deltas, grad_I=out,
                           alpha=1.0, repeat=1)

    def update_conv(self, out, inputs, weights, deltas, ofmshape, ofmsize,
                    ofmlocs, ifmshape, links, nifm, padding, stride, ngroups,
                    fwidth, updatebuf, local=False, layer=None):
        """
        Compute the updated gradient for a convolutional network layer.

        Arguments:
            out (GPUTensor): Where to store the updated gradient value.
            inputs (GPUTensor): Will be either the dataset input values (first
                                layer), or the outputs from the previous layer.
            weights (GPUTensor): The weight coefficient values for this layer.
            deltas (GPUTensor): The error values for this layer
            ofmshape (tuple): Dimensions of each output feature map (typically
                              height and width).
            ofmsize (int): Total size of each output feature map.
            ofmlocs (GPUTensor): Indices giving the location of each element in
                                 each output feature map stored in out.
            ifmshape (tuple): Dimensions of each input feature map (typically
                              height and width).
            links (GPUTensor): Input receptive field indices.
            nifm (int): Total number of input feature maps.
            padding (int): Number of additional elements to include along each
                           dimension of each local receptive field during the
                           convolution operation.
            stride (int): Number of neurons to shift the filter at each step.
            ngroups (int): Number of groups.
            fwidth (int): Filter width.
            updatebuf (GPUTensor): Temporary storage buffer used to hold the
                                   updated gradient for a single receptive
                                   field
            local (bool, optional): Whether to do local filtering (True) or
                                    convolution (False, the default)
            layer (Layer): The layer object.
        """
        self.ng.update_conv(layer=updatebuf, I=inputs, E=deltas, grad_F=out,
                            alpha=1.0, repeat=1)

    def fprop_pool(self, out, inputs, op, ofmshape, ofmsize, ofmlocs, fshape,
                   ifmshape, links, nifm, padding, stride, fpropbuf):
        """
        Forward propagate the inputs of a Pooling network layer to
        produce output pre-activations (ready for transformation by an
        activation function).

        Arguments:
            out (GPUTensor): Where to store the forward propagated results.
            inputs (GPUTensor): Will be either the dataset input values (first
                                layer), or the outputs from the previous layer.
            op (string): The type of pooling operation to apply.  We support
                         "max", "avg", "l2" currently.
            ofmshape (tuple): Dimensions of each output feature map (typically
                              number of height and width neurons).
            ofmsize (int): Total size of each output feature map.
            ofmlocs (GPUTensor): Indices giving the location of each element in
                                 each output feature map stored in out.
            fshape (tuple): Dimensions of each filter (typically height and
                            width).
            ifmshape (tuple): Dimensions of each input feature map (typically
                              number of height and width neurons).
            links (GPUTensor): Input receptive field indices.
            nifm (int): Total number of input feature maps.
            padding (int): Number of additional elements to include along each
                           dimension of each local receptive field during the
                           pooling operation.
            stride (int): Number of neurons to shift the filter at each step.
            fpropbuf (GPUTensor): Temporary storage buffer used to hold the
                                  pooled outputs for a single receptive field.
        """
        op = op.lower()
        if op == "max":
            self.ng.fprop_pool(layer=fpropbuf, I=inputs, O=out, repeat=1)
        else:
            raise AttributeError("unexpected pooling op type: %s", op)

    def bprop_pool(self, out, fouts, inputs, deltas, op, ofmshape, ofmsize,
                   ofmlocs, fshape, fpsize, ifmshape, links, nifm, padding,
                   stride, bpropbuf):
        """
        Backward propagate the error through a pooling network layer.

        Arguments:
            out (GPUTensor): Where to store the backward propagated errors.
            fouts (GPUTensor): Forward propagated outputs from the previous
                               layer.
            inputs (GPUTensor): Will be either the dataset input values (first
                                layer), or the outputs from the previous layer.
            deltas (GPUTensor): The error values for this layer
            op (string): The type of pooling operation to apply.  We support
                         "max", "avg", "l2" currently.
            ofmshape (tuple): Dimensions of each output feature map (typically
                              height and width).
            ofmsize (int): Total size of each output feature map.
            ofmlocs (GPUTensor): Indices giving the location of each element in
                              each output feature map stored in out.
            fshape (tuple): Dimensions of each filter (typically height and
                            width).
            fpsize (int): The size of each filter.
            ifmshape (tuple): Dimensions of each input feature map (typically
                              height and width).
            links (GPUTensor): Input receptive field indices.
            nifm (int): Total number of input feature maps.
            padding (int): Number of additional elements to include along each
                           dimension of each local receptive field during the
                           pooling operation.
            stride (int): Number of neurons to shift the filter at each step.
            bpropbuf (GPUTensor): Temporary storage buffer used to hold the
                                  backpropagated error for a single receptive
                                  field
        """
        op = op.lower()
        if op == "max":
            self.ng.bprop_pool(layer=bpropbuf, I=inputs, E=deltas, grad_I=out,
                               repeat=1)
        else:
            raise AttributeError("unexpected pooling op type: %s", op)

    def logistic(self, x, out):
        """
        Logistic sigmoid nonlinearity, 1/(1+exp(-x))

        Arguments:
            x (GPUTensor): Input tensor
            out (GPUTensor): Output tensor

        """
        self.ng.sig(x, out=out)

        return out

    def rectlin(self, x, out):
        """
        Rectified Linear nonlinearity

        Arguments:
            x (GPUTensor): Input tensor
            out (GPUTensor): Output tensor

        """
        self.ng.maximum(x, 0., out=out)
        return out

    def rectleaky(self, x, slope, out):
        out[:] = self.ng.maximum(x, x*slope)

    def rectleaky_derivative(self, x, slope, out):
        out[:] = self.ng.greater(x, 0) * (1.0 - slope) + slope

    def sum(self, tsr, axes, out):
        """
        Sum

        Arguments:
            tsr  (GPUTensor): Input tensor
            axes (int): Axis along which the reduction is performed. If axes
                        is None,  the tensor is flattened and reduced over
                        both dimensions.
            out (GPUTensor): Output tensor
        """
        if axes is None:
            sze = tsr.shape[0]*tsr.shape[1]
            self.ng.sum(tsr.reshape(sze, 1), axis=0, out=out)
        else:
            self.ng.sum(tsr, axis=axes, out=out)
        return out

    def mean(self, tsr, axes, out):
        """
        Calculates the arithmetic mean of the elements along the specified
        axes.

        Arguments:
            tsr (GPUTensor): Input tensor
            axes (int): Axis along which the reduction is performed. If axes
                        is None,  the tensor is flattened and reduced over
                        both dimensions.
            out (GPUTensor): Output tensor
        """
        if axes is None:
            sze = tsr.shape[0]*tsr.shape[1]
            self.ng.mean(tsr.reshape(sze, 1), axis=0, out=out)
        else:
            self.ng.mean(tsr, axis=axes, out=out)
        return out

    def min(self, tsr, axes, out):
        """
        Calculates the minimum of the elements along the specified
        axes.

        Arguments:
            tsr (GPUTensor): Input tensor
            axes (int): Axis along which the reduction is performed. If axes
                        is None,  the tensor is flattened and reduced over
                        both dimensions.
            out (GPUTensor): Output tensor
        """
        if axes is None:
            sze = tsr.shape[0]*tsr.shape[1]
            self.ng.min(tsr.reshape(sze, 1), axis=0, out=out)
        else:
            self.ng.min(tsr, axis=axes, out=out)
        return out

    def max(self, tsr, axes, out):
        """
        Calculates the maximum of the elements along the specified
        axes.

        Arguments:
            tsr (GPUTensor): Input tensor
            axes (int): Axis along which the reduction is performed. If axes
                        is None,  the tensor is flattened and reduced over
                        both dimensions.
            out (GPUTensor): Output tensor
        """
        if axes is None:
            sze = tsr.shape[0]*tsr.shape[1]
            self.ng.max(tsr.reshape(sze, 1), axis=0, out=out)
        else:
            self.ng.max(tsr, axis=axes, out=out)
        return out

    def variance(self, tsr, axes, out, mean=None):
        """
        Calculates the variance of the elements along the specified
        axes.

        Arguments:
            tsr (GPUTensor): the tensor on which to compute the variance
            axes (int, list, optional): the dimension(s) along which to
                                        variance.  If set to None, we will
                                        variance over all dimensions.
            out (GPUTensor): where the result will be stored.
            mean (GPUTensor): the tensor containing mean of tsr

        Returns:
            GPUTensor: reference to out
        """
        if mean is None:
            logger.error("GPUTensor requires mean to be specified.")
            raise ValueError("mean not specified")
        self.ng.mean(self.ng.square(tsr-mean),  axis=axes, out=out)
        return out

    def fabs(self, x, out):
        """
        Calculates absolute value of the elements in a tensor

        Arguments:
            x (GPUTensor): Input tensor
            out (GPUTensor): Output tensor

        Returns:
            GPUTensor: reference to out
        """
        self.ng.fabs(x, out=out)
        return out

    def sqrt(self, x, out):
        """
        Calculates square root of the elements in a tensor

        Arguments:
            x (GPUTensor): Input tensor
            out (GPUTensor): Output tensor

        Returns:
            GPUTensor: reference to out
        """
        self.ng.sqrt(x, out=out)
        return out

    def zeros(self, shape, dtype=default_dtype, persist_values=True):
        """
        Allocate a new GPUTensor and fill it with zeros.

        Arguments:
            shape (tupel): Shape of the desired GPUTensor
            dtype (dtype): Optional datatype
            persist_values (bool, optional): If set to True (the default), the
                                             values assigned to this Tensor
                                             will persist across multiple begin
                                             and end calls.  Setting to False
                                             may provide a performance increase
                                             if values do not need to be
                                             maintained across such calls

        Returns:
            GPUTensor: output
        """
        return self.ng.zeros(shape, dtype=dtype)

    def ones(self, shape, dtype=default_dtype, persist_values=True):
        """
        Allocate a new GPUTensor and fill it with ones.

        Arguments:
            shape (tupel): Shape of the desired GPUTensor
            dtype (dtype): Optional datatype
            persist_values (bool, optional): If set to True (the default), the
                                             values assigned to this Tensor
                                             will persist across multiple begin
                                             and end calls.  Setting to False
                                             may provide a performance increase
                                             if values do not need to be
                                             maintained across such calls

        Returns:
            GPUTensor: output
        """
        return self.ng.ones(shape, dtype=dtype)

    def empty(self, shape, dtype=default_dtype, persist_values=True):
        """
        Allocate a new GPUTensor.

        Arguments:
            shape (tupel): Shape of the desired GPUTensor
            dtype (dtype): Optional datatype
            persist_values (bool, optional): If set to True (the default), the
                                             values assigned to this Tensor
                                             will persist across multiple begin
                                             and end calls.  Setting to False
                                             may provide a performance increase
                                             if values do not need to be
                                             maintained across such calls

        Returns:
            GPUTensor: output
        """
        return self.ng.empty(shape, dtype=dtype)

    def array(self, ary, dtype=default_dtype, persist_values=True, name=None,
              allocator=drv.mem_alloc):
        """
        Allocate a new GPUTensor and fill it with supplied numpy array.

        Arguments:
            ary (ndarray): Numpy array with source data
            dtype (dtype, optional): Optional datatype
            persist_values (bool, optional): If set to True (the default), the
                                             values assigned to this Tensor
                                             will persist across multiple begin
                                             and end calls.  Setting to False
                                             may provide a performance increase
                                             if values do not need to be
                                             maintained across such calls
            name (string): Name for the GPUTensor
            allocator (pycuda): Pycuda memory allocator

        Returns:
            GPUTensor: output
        """
        return self.ng.array(ary, dtype=dtype, name=name)

    def add(self, left, right, out):
        """
        Elementwise addition

        Arguments:
            left (GPUTensor, numeric): left-hand side operand.
            right (GPUTensor, numeric): right-hand side operand.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.add(left, right, out=out)
        return out

    def subtract(self, left, right, out):
        """
        Elementwise subtraction

        Arguments:
            left (GPUTensor, numeric): left-hand side operand.
            right (GPUTensor, numeric): right-hand side operand.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.subtract(left, right, out=out)
        return out

    def multiply(self, left, right, out):
        """
        Elementwise multiplication

        Arguments:
            left (GPUTensor, numeric): left-hand side operand.
            right (GPUTensor, numeric): right-hand side operand.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.multiply(left, right, out=out)
        return out

    def divide(self, left, right, out):
        """
        Elementwise division

        Arguments:
            left (GPUTensor, numeric): left-hand side operand.
            right (GPUTensor, numeric): right-hand side operand.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.divide(left, right, out=out)
        return out

    def greater(self, left, right, out):
        """
        Elementwise greater than testing

        Arguments:
            left (GPUTensor, numeric): left-hand side operand.
            right (GPUTensor, numeric): right-hand side operand.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.greater(left, right, out=out)
        return out

    def equal(self, left, right, out):
        """
        Performs element-wise equality testing on each element of left and
        right, storing the result in out.  Each operand is assumed to be the
        same shape (or broadcastable as such).

        Arguments:
            left (GPUTensor, numeric): left-hand side operand.
            right (GPUTensor, numeric): right-hand side operand.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.equal(left, right, out=out)
        return out

    def not_equal(self, left, right, out):
        """
        Elementwise not equal testing

        Arguments:
            left (GPUTensor, numeric): left-hand side operand.
            right (GPUTensor, numeric): right-hand side operand.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.not_equal(left, right, out=out)
        return out

    def clip(self, a, a_min, a_max, out):
        """
        Elementwise clipping between a range of specified values

        Arguments:
            a (GPUTensor): input tensor.
            a_min (float): floor value.
            a_max (float): ceiling value.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.clip(a, a_min, a_max, out=out)
        return out

    def log(self, a, out):
        """
        Elementwise base-e logarithm

        Arguments:
            a (GPUTensor): input tensor.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.log(a, out=out)
        return out

    def tanh(self, a, out):
        """
        Elementwise tanh

        Arguments:
            a (GPUTensor): input tensor.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        self.ng.tanh(a, out=out)
        return out

    def argmax(self, a, out, axis=0):
        """
        Calculates the indices of the maximal element value along the specified
        axis.  If multiple elements contain the maximum, only the elements of
        the first are returned.

        Arguments:
            tsr (GPUTensor): The GPUTensor on which to find the maximum indices
            axis (int): The dimension along which to find the maximum.  If set
                        to None, find the overall maximum index of a flattened
                        representation of tsr.
            out (GPUTensor): Where to store the result.  Should be of the
                             appropriate type and expected shape

        Returns:
            GPUTensor: reference to out
        """
        self.ng.argmax(a, out=out, axis=axis)
        return out

    def softmax(self, x, out):
        """
        Softmax nonlinearity. Computes exp(x-max(x)) / sum_i exp(x_i-max(x_i))

        Arguments:
            x (GPUTensor): input tensor.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        out[:] = (self.ng.reciprocal(self.ng.sum(
                  self.ng.exp(x - self.ng.max(x, axis=0)), axis=0)) *
                  self.ng.exp(x - self.ng.max(x, axis=0)))
        return out

    def softmax_gradient(self, y, err, out):
        """
        Gradient of the softmax nonlinearity.

        Arguments:
            y (GPUTensor): input tensor.
            err (GPUTensor): backpropagated error.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        raise NotImplementedError("Softmax gradient should use shortcut")
        return out

    def make_binary_mask(self, tsr, keepthresh=0.5, dtype=default_dtype):
        """
        Create a binary mask for dropout layers.

        Arguments:
            tsr (GPUTensor): Output tensor
            keepthresh (float): fraction of ones
        """
        self.ng.dropout(keep=keepthresh, out=tsr)

    def gdm_compound(self, ps_item, us_item, vs_item, momentum_coef,
                     learning_rate, epoch):
        """
        Perform gradient descent update with momentum.

        Arguments:
            ps_item (GPUTensor): parameter tensor (e.g. a weight matrix)
            us_item (GPUTensor): update tensor, contains gradient wrt. weights
            vs_item (GPUTensor): velocity tensor.
            momentum_coef (float): momentum coefficient.
            learning_rate (float): learning rate.
            epoch (int): epoch (used in conjunction with diagnostics).

        Outputs are written to vs_item (updated velocity)
        and ps_item (updated weights)
        """
        vs_item[:] = vs_item * momentum_coef - us_item * learning_rate
        ps_item[:] = ps_item + vs_item

    def gdmwd_compound(self, ps_item, us_item, vs_item, momentum_coef,
                       learning_rate, wd, epoch):
        """
        Perform gradient descent update with momentum and weight decay.

        Arguments:
            ps_item (GPUTensor): parameter tensor (e.g. a weight matrix)
            us_item (GPUTensor): update tensor, contains gradient wrt. weights
            vs_item (GPUTensor): velocity tensor.
            momentum_coef (float): momentum coefficient.
            learning_rate (float): learning rate.
            wd (float): weight decay parameter.
            epoch (int): epoch (used in conjunction with diagnostics).

        Outputs:
            ps_item, the updated weights.
            vs_item, the updated velocity.
            us_item, used as a temp buffer.
        """
        vs_item[:] = vs_item * momentum_coef - us_item * \
            learning_rate - learning_rate * wd * ps_item
        ps_item[:] = ps_item + vs_item

    def exp_mavg(self, mavg, newval, rho):
        """
        Calculate the exponential moving average

        Arguments:
            mavg:  The running value of the moving average
            newval:  New sample to be added to the moving average
            rho:  Interpolation value
        """

        mavg[:] = rho * mavg + (1.0 - rho) * newval

    def ada_update(self, ps_item, us_item, gs_item, ds_item, ls_item, ss_item,
                   rho, epsilon):
        """
        Update rule for AdaDelta (Zeiler, http://arxiv.org/abs/1212.5701)

        Arguments:
            ps_item: weight / parameter (will be updated)
            us_item: update
            gs_item: expected value of Gradient Squared (will be updated)
            ds_item: expected value of Delta Squared (will be updated)
            ls_item: learning rate (will be updated)
            ss_item: Scratch Space
            rho: decay constant (determines window size)
            epsilon: small positive constant for numerical stability
        """
        # Accumulate E[Grad^2]
        gs_item[:] = gs_item * rho + (1.0 - rho) * us_item * us_item

        # Calculate Updates
        ls_item[:] = self.ng.sqrt((ds_item + epsilon) /
                                  (gs_item + epsilon)) * (-1.0) * us_item

        # Accumulate E[Delt^2]
        ds_item[:] = ds_item * rho + (1.0 - rho) * ls_item * ls_item

        # Final update to the params
        ps_item[:] = ps_item + ls_item

    def rms_update(self, params, updates, run_squares, velocity, scratch_space,
                   gamma, epsilon, learning_rate, momentum_coef):

        # Update running squares
        run_squares[:] = gamma * run_squares + (1. - gamma) * updates * updates

        # Now scale the gradient by lr / rms(grad) (with a epsilon term for
        # stability) and use it to update the params
        if momentum_coef == 0:
            params[:] = params - learning_rate * updates * self.ng.reciprocal(
                self.ng.sqrt(run_squares) + epsilon)
        else:
            velocity[:] = velocity * momentum_coef - \
                learning_rate * updates * \
                self.ng.reciprocal(self.ng.sqrt(run_squares) + epsilon)
            params[:] = params + velocity

    def fprop_bn_compound(self, inputs, beta, gamma, eps, xhat,
                          xmean, xvar, gmean, gvar, rho, out):
        """
        Batch normalization forward pass, compounded to run in 3 kernel calls.

        Arguments:
            inputs: input data to be normalized
            beta: location parameter
            gamma: scale parameter
            eps: small constant for numerical stability
            xvar: variance (updated)
            xhat: normalized input (updated)
            out: normalized and rescaled input (updated)
        """
        xvar[:] = self.ng.var(inputs, axis=1)
        xmean[:] = self.ng.mean(inputs, axis=1)
        gmean[:] = gmean * rho + (1.0 - rho) * xmean
        gvar[:] = gvar * rho + (1.0 - rho) * xvar

        xvar[:] = self.ng.reciprocal(self.ng.sqrt(xvar + eps))
        xhat[:] = xvar * (inputs - xmean)
        out[:] = xhat * gamma + beta
        return out

    def bprop_bn_compound(self, xhat, error, xvar, gamma,
                          beta_updates, gamma_updates):
        """
        Batch normalization backward pass, compounded to run with 4 kernel
        calls.

        Arguments:
            xhat: normalized input data (updated)
            error: backpropagated deltas (updated)
            xvar: precomputed variance
            gamma: scale parameter
            beta_updates: gradient update for beta (updated)
            gamma_updates: gradient update for gamma (updated)
        """
        gamma_updates[:] = self.ng.sum(xhat * error, axis=1)
        beta_updates[:] = self.ng.sum(error, axis=1)
        xhat[:] = (xhat * gamma_updates + beta_updates) / float(xhat.shape[1])
        error[:] = xvar * gamma * (error - xhat)
Пример #11
0
            if data_type == "All Ones":
                cpuA = np.ones(dimA, dtype=dtype).astype(np.float32)
                cpuB = np.ones(dimB, dtype=dtype).astype(np.float32)
                #cpuB = np.identity(n, dtype=np.float32)
            else:
                cpuA = np.random.uniform(-1.0, 1.0, dimA).astype(np.float32)
                cpuB = np.random.uniform(-1.0, 1.0, dimB).astype(np.float32)

            devA = ng.array(cpuA, dtype=dtype)
            devB = ng.array(cpuB, dtype=dtype)
            devC = ng.empty(dimC, dtype=dtype)

            if op[0] == 't': cpuA, devA = cpuA.T, devA.T
            if op[1] == 't': cpuB, devB = cpuB.T, devB.T

            ng.dot(devA, devB, devC, repeat=repeat)

            if cpu:

                cpuC = np.dot(cpuA, cpuB)

                cpuD = devC.get()
                diff = np.absolute(cpuC - cpuD)

                print diff.max()
                print cpuD[::max(m // 4, 1), ::max(n // 4, 1)]
                print cpuC[::max(m // 4, 1), ::max(n // 4, 1)]
                print diff[::max(m // 4, 1), ::max(n // 4, 1)]

                # print cpuD
                # exit()
Пример #12
0
                                # devC2    = devC2s.share(dimC, dtype=np.float32)
                                devC2[:] = devC1

                                if op[0] == 't':
                                    devA1, devA2 = devA1.T, devA2.T
                                if op[1] == 't':
                                    devB1, devB2 = devB1.T, devB2.T

                                for tile in (32, 64, 128):
                                    if op == 'nt' and tile != 128:
                                        continue
                                    try:

                                        ng.dot(devA1,
                                               devB1,
                                               devC1,
                                               alpha=alpha,
                                               beta=beta,
                                               size=tile)
                                        context.synchronize()

                                        cublas_dot(devA2,
                                                   devB2,
                                                   devC2,
                                                   alpha=alpha,
                                                   beta=beta)

                                        partial1 = ng.empty(
                                            (devC1.shape[0], 1),
                                            dtype=np.float32)
                                        partial2 = partial1[0:1, 0:1]
Пример #13
0
class MGPU(GPU):
    default_dtype = np.float32
    num_dev = 1
    is_dist = True

    def __init__(self, rng_seed, stochastic_round=False, device_id=0,
                 num_dev=2):
        drv.init()
        self.num_dev = num_dev

        if device_id == 0:
            self.dev_list = range(num_dev)
        else:
            self.dev_list = device_id

        assert len(self.dev_list) == self.num_dev
        assert self.num_dev <= drv.Device.count()

        self.ctxs = []
        self.devs = []
        self._strms = []
        self._redstrms = []

        self._events = []
        self._redevents = []

        self.async = True
        self._nostrms = [None for i in self.dev_list]

        for i in self.dev_list:
            self.devs.append(drv.Device(i))

        for dev in self.devs:
            self.ctxs.append(
                dev.make_context(drv.ctx_flags.SCHED_BLOCKING_SYNC))
            self._strms.append(drv.Stream())
            self._redstrms.append(drv.Stream())
            self._events.append(drv.Event())
            self._redevents.append(drv.Event())
            drv.Context.pop()

        self.ctxs[0].push()
        atexit.register(drv.Context.pop)
        MGPUTensor.ctxs = self.ctxs
        MGPUTensor.num_dev = num_dev

        self.ng = NervanaGPU(stochastic_round=stochastic_round)
        logger.info("Initialized %d device NervanaGPU, stochastic_round=%s",
                    num_dev, stochastic_round)
        self.ng.block = None
        self.rng_seed = rng_seed
        self.rng_init()

        # Setup the pairwise contexts
        # TODO clean up this code to avoid indexing
        for dev1, ctx1 in zip(self.devs, self.ctxs):
            ctx1.push()
            for dev2, ctx2 in zip(self.devs, self.ctxs):
                if dev1 == dev2:
                    continue
                if dev1.can_access_peer(dev2):
                    ctx1.enable_peer_access(ctx2)
                else:
                    print('Cannot enable peer access between '
                          '{:d} and {:d}'.format(dev1, dev2))
            ctx1.pop()

    def make_events(self):
        evtlist = []
        for ctx in self.ctxs:
            ctx.push()
            evtlist.append(drv.Event())
            ctx.pop()
        return evtlist

    # These definitions are for performing grouped context commands
    # This is experimental and should remove _stack for actual usage
    def begin_stack(self, block, identifier):
        if block == Block.update:
            self.ng.block = Block.update
            self.call_stack = []
        else:
            pass

    def end_stack(self, block, identifier):
        if block == Block.update:
            self.ng.block = None
            for idx, ctx in enumerate(self.ctxs):
                ctx.push()
                self.ng.stream = self.strms[idx]
                for method, args, kwargs in self.call_stack:
                    myargs = [a._tensorlist[idx] if isinstance(
                        a, MGPUTensor) else a for a in args]
                    mykwargs = {k: v._tensorlist[idx] if isinstance(
                        v, MGPUTensor) else v for k, v in kwargs.iteritems()}
                    getattr(super(MGPU, self), method)(*myargs, **mykwargs)
                self.ng.stream = None
                ctx.pop()
            self.call_stack = None
        else:
            pass

    @property
    def strms(self):
        return self._strms if self.async else self._nostrms

    @property
    def redstrms(self):
        return self._redstrms if self.async else self._nostrms

    def uniform(self, low=0.0, high=1.0, size=1, dtype=default_dtype,
                name=None, persist_values=True, ptype='replica'):
        """
        generate numpy random number and convert to a GPUTensor.
        If called with dtype=None it will probably explode
        """
        assert len(size) == 2
        result = self.empty(size, dtype=dtype, persist_values=persist_values)
        result.ptype = ptype
        beshape = size if ptype == 'replica' else (self.num_dev * size[0],
                                                   size[1])
        ary = np.random.uniform(low, high, beshape).astype(dtype)
        self.set(result, ary)
        return result

    def normal(self, loc=0.0, scale=1.0, size=1, dtype=default_dtype,
               name=None, persist_values=True, ptype='replica'):
        """
        Gaussian/Normal random number sample generation
        """
        assert len(size) == 2
        result = self.empty(size, dtype=dtype, persist_values=persist_values)
        result.ptype = ptype
        beshape = size if ptype == 'replica' else (self.num_dev * size[0],
                                                   size[1])
        ary = np.random.normal(loc, scale, beshape).astype(dtype)
        self.set(result, ary)
        return result

    def synchronize(self):
        if not self.async:
            return
        for s in self.strms:
            s.synchronize()

    def redsynchronize(self):
        if not self.async:
            return
        for s in self.redstrms:
            s.synchronize()

    def allocate_fragment(self, shape, dtype=default_dtype,
                          persist_values=True):
        # TODO: set ptype to be fragment in this case ??
        return self.empty((shape[0], shape[1] / self.num_dev), dtype,
                          persist_values=persist_values)

    def zeros_like(self, ary, dtype=default_dtype, persist_values=True,
                   name=None):
        result = self.zeros(ary.shape, dtype=dtype,
                            persist_values=persist_values)
        result.ptype = ary.ptype
        return result

    def empty_like(self, ary, dtype=default_dtype, persist_values=True,
                   name=None):
        result = self.empty(ary.shape, dtype=dtype,
                            persist_values=persist_values, name=name)
        result.ptype = ary.ptype
        return result

    def set(self, tensor, data):
        assert isinstance(tensor, MGPUTensor)
        if tensor.ptype == 'replica':
            for dest, strm, ctx in zip(tensor.tlist, self.strms, self.ctxs):
                ctx.push()
                drv.memcpy_htod_async(dest.ptr, data, strm)
                ctx.pop()
            # tensor.copy_from(data)
        else:
            self.scatter(data, tensor)

    def scatter(self, hbuf, dbuf):
        '''
        scatters the array data in hbuf to the mgpu tensor
        assumes that dbuf is a M x N and hbuf is M x (Nxk) where k is the
        number of replicas
        also assumes that dtype of hbuf and dbuf are the same
        '''
        assert hbuf.size == dbuf.size * dbuf.num_dev
        assert isinstance(dbuf, MGPUTensor)
        assert hbuf.dtype == dbuf.dtype
        ndata = dbuf.size
        starts = [i * ndata for i in range(self.num_dev)]

        for dest, strm, ctx, doff in zip(dbuf.tlist, self.strms, self.ctxs,
                                         starts):
            src = hbuf.reshape((hbuf.size))[doff:(doff + ndata)]
            ctx.push()
            drv.memcpy_htod_async(dest.ptr, src, strm)
            ctx.pop()

        self.synchronize()

    def fprop_fc(self, out, inputs, weights, layer=None):
        """
        In this case, the weights are shards, the acts are replicas
        ubuf should be of size nout/num_dev x mbsz
        """
        ubuf = layer.mempool[0]
        assert ubuf.shape == (weights.shape[0], inputs.shape[1])

        if layer.use_biases:
            biases = layer.biases.tlist
        else:
            biases = [None for i in range(self.num_dev)]

        for dbuf, ibuf, wt, bs, strm, ctx in zip(ubuf.tlist, inputs.tlist,
                                                 weights.tlist, biases,
                                                 self.strms, self.ctxs):
            ctx.push()
            self.ng.stream = strm
            self.ng.dot(wt, ibuf, dbuf)
            if layer.use_biases:
                self.ng.add(dbuf, bs, out=dbuf)
            ctx.pop()

        # Note, should be safe not to sync because each fragment is computed
        # on the same stream that originates the copy
        # self.synchronize()
        self.fragment_to_replica(ubuf, out)

    def bprop_fc(self, out, weights, deltas, layer=None):
        """
        Backward propagate the error through a fully connected network layer.

        Arguments:
            out (GPUTensor): Where to store the backward propagated errors.
            weights (GPUTensor): The weight coefficient values for this layer.
            deltas (GPUTensor): The error values for this layer
            layer (Layer): The layer object.
        """
        ubuf = layer.mempool[1]
        wtsz = weights.shape[0]
        starts = [i * wtsz for i in range(self.num_dev)]
        assert out.shape == (weights.shape[1], deltas.shape[1])
        assert ubuf.shape == out.shape

        for dbuf, ibuf, wt, strm, ctx, off in zip(out.tlist, deltas.tlist,
                                                  weights.tlist, self.strms,
                                                  self.ctxs, starts):
            ctx.push()
            self.ng.stream = strm
            self.ng.dot(wt.T, ibuf[off:(off + wtsz)], dbuf)
            ctx.pop()

        # Note, should be safe not to sync because each fragment is computed
        # on the same stream that originates the copy
        self.synchronize()
        self.reduce(out, ubuf)

    def update_fc(self, out, inputs, deltas, layer=None):
        wtsz = out.shape[0]
        starts = [i * wtsz for i in range(self.num_dev)]

        for obuf, dbuf, ibuf, strm, ctx, off in zip(out.tlist, deltas.tlist,
                                                    inputs.tlist, self.strms,
                                                    self.ctxs, starts):
            ctx.push()
            self.ng.stream = strm
            self.ng.dot(dbuf[off:(off + wtsz)], ibuf.T, obuf)
            ctx.pop()

        # self.synchronize()

    def update_fc_bias(self, err, out):
        """
        Compute the updated bias gradient for a fully connected network layer.

        Arguments:
            out (GPUTensor): Where to store the updated gradient value.
            err (GPUTensor): backpropagated error
        """
        wtsz = out.shape[0]
        starts = [i * wtsz for i in range(self.num_dev)]

        for ebuf, obuf, strm, ctx, off in zip(err.tlist, out.tlist, self.strms,
                                              self.ctxs, starts):
            ctx.push()
            self.ng.stream = strm
            self.ng.sum(ebuf[off:(off + wtsz)], axis=1, out=obuf)
            ctx.pop()

    def add_fc_bias(self, inputs, bias):
        """
        This is a no-op since we absorb the bias add into the fprop_fc call
        """
        pass

    def reduce_tensor(self, ary, async=True):
        '''
        This is the case for the scalar tensor
        '''
        assert ary.size == 1
        if ary.ptype == 'replica':
            self.ctxs[0].push()
            result = ary.tlist[0].get()
            self.ctxs[0].pop()
            return result

        result = np.zeros((self.num_dev, 1), ary.dtype)
        for i, (ctx, src_buf, strm) in enumerate(zip(
                self.ctxs, ary.tlist, self.strms)):
            ctx.push()
            drv.memcpy_dtoh_async(result[i], src_buf.ptr, strm)
            ctx.pop()
        self.synchronize()
        return result.sum()
Пример #14
0
class MGPU(GPU):
    default_dtype = np.float32
    num_dev = 1
    is_dist = True

    def __init__(self,
                 rng_seed,
                 stochastic_round=False,
                 device_id=0,
                 num_dev=2):
        drv.init()
        self.num_dev = num_dev

        if device_id == 0:
            self.dev_list = range(num_dev)
        else:
            self.dev_list = device_id

        assert len(self.dev_list) == self.num_dev
        assert self.num_dev <= drv.Device.count()

        self.ctxs = []
        self.devs = []
        self._strms = []
        self._redstrms = []

        self._events = []
        self._redevents = []

        self. async = True
        self._nostrms = [None for i in self.dev_list]

        for i in self.dev_list:
            self.devs.append(drv.Device(i))

        for dev in self.devs:
            self.ctxs.append(
                dev.make_context(drv.ctx_flags.SCHED_BLOCKING_SYNC))
            self._strms.append(drv.Stream())
            self._redstrms.append(drv.Stream())
            self._events.append(drv.Event())
            self._redevents.append(drv.Event())
            drv.Context.pop()

        self.ctxs[0].push()
        atexit.register(drv.Context.pop)
        MGPUTensor.ctxs = self.ctxs
        MGPUTensor.num_dev = num_dev

        self.ng = NervanaGPU(stochastic_round=stochastic_round)
        logger.info("Initialized %d device NervanaGPU, stochastic_round=%s",
                    num_dev, stochastic_round)
        self.ng.block = None
        self.rng_seed = rng_seed
        self.rng_init()

        # Setup the pairwise contexts
        # TODO clean up this code to avoid indexing
        for dev1, ctx1 in zip(self.devs, self.ctxs):
            ctx1.push()
            for dev2, ctx2 in zip(self.devs, self.ctxs):
                if dev1 == dev2:
                    continue
                if dev1.can_access_peer(dev2):
                    ctx1.enable_peer_access(ctx2)
                else:
                    print('Cannot enable peer access between '
                          '{:d} and {:d}'.format(dev1, dev2))
            ctx1.pop()

    def make_events(self):
        evtlist = []
        for ctx in self.ctxs:
            ctx.push()
            evtlist.append(drv.Event())
            ctx.pop()
        return evtlist

    # These definitions are for performing grouped context commands
    # This is experimental and should remove _stack for actual usage
    def begin_stack(self, block, identifier):
        if block == Block.update:
            self.ng.block = Block.update
            self.call_stack = []
        else:
            pass

    def end_stack(self, block, identifier):
        if block == Block.update:
            self.ng.block = None
            for idx, ctx in enumerate(self.ctxs):
                ctx.push()
                self.ng.stream = self.strms[idx]
                for method, args, kwargs in self.call_stack:
                    myargs = [
                        a._tensorlist[idx] if isinstance(a, MGPUTensor) else a
                        for a in args
                    ]
                    mykwargs = {
                        k:
                        v._tensorlist[idx] if isinstance(v, MGPUTensor) else v
                        for k, v in kwargs.iteritems()
                    }
                    getattr(super(MGPU, self), method)(*myargs, **mykwargs)
                self.ng.stream = None
                ctx.pop()
            self.call_stack = None
        else:
            pass

    @property
    def strms(self):
        return self._strms if self. async else self._nostrms

    @property
    def redstrms(self):
        return self._redstrms if self. async else self._nostrms

    def uniform(self,
                low=0.0,
                high=1.0,
                size=1,
                dtype=default_dtype,
                name=None,
                persist_values=True,
                ptype='replica'):
        """
        generate numpy random number and convert to a GPUTensor.
        If called with dtype=None it will probably explode
        """
        assert len(size) == 2
        result = self.empty(size, dtype=dtype, persist_values=persist_values)
        result.ptype = ptype
        beshape = size if ptype == 'replica' else (self.num_dev * size[0],
                                                   size[1])
        ary = np.random.uniform(low, high, beshape).astype(dtype)
        self.set(result, ary)
        return result

    def normal(self,
               loc=0.0,
               scale=1.0,
               size=1,
               dtype=default_dtype,
               name=None,
               persist_values=True,
               ptype='replica'):
        """
        Gaussian/Normal random number sample generation
        """
        assert len(size) == 2
        result = self.empty(size, dtype=dtype, persist_values=persist_values)
        result.ptype = ptype
        beshape = size if ptype == 'replica' else (self.num_dev * size[0],
                                                   size[1])
        ary = np.random.normal(loc, scale, beshape).astype(dtype)
        self.set(result, ary)
        return result

    def synchronize(self):
        if not self. async:
            return
        for s in self.strms:
            s.synchronize()

    def redsynchronize(self):
        if not self. async:
            return
        for s in self.redstrms:
            s.synchronize()

    def allocate_fragment(self,
                          shape,
                          dtype=default_dtype,
                          persist_values=True):
        # TODO: set ptype to be fragment in this case ??
        return self.empty((shape[0], shape[1] / self.num_dev),
                          dtype,
                          persist_values=persist_values)

    def zeros_like(self,
                   ary,
                   dtype=default_dtype,
                   persist_values=True,
                   name=None):
        result = self.zeros(ary.shape,
                            dtype=dtype,
                            persist_values=persist_values)
        result.ptype = ary.ptype
        return result

    def empty_like(self,
                   ary,
                   dtype=default_dtype,
                   persist_values=True,
                   name=None):
        result = self.empty(ary.shape,
                            dtype=dtype,
                            persist_values=persist_values,
                            name=name)
        result.ptype = ary.ptype
        return result

    def set(self, tensor, data):
        assert isinstance(tensor, MGPUTensor)
        if tensor.ptype == 'replica':
            for dest, strm, ctx in zip(tensor.tlist, self.strms, self.ctxs):
                ctx.push()
                drv.memcpy_htod_async(dest.ptr, data, strm)
                ctx.pop()
            # tensor.copy_from(data)
        else:
            self.scatter(data, tensor)

    def scatter(self, hbuf, dbuf):
        '''
        scatters the array data in hbuf to the mgpu tensor
        assumes that dbuf is a M x N and hbuf is M x (Nxk) where k is the
        number of replicas
        also assumes that dtype of hbuf and dbuf are the same
        '''
        assert hbuf.size == dbuf.size * dbuf.num_dev
        assert isinstance(dbuf, MGPUTensor)
        assert hbuf.dtype == dbuf.dtype
        ndata = dbuf.size
        starts = [i * ndata for i in range(self.num_dev)]

        for dest, strm, ctx, doff in zip(dbuf.tlist, self.strms, self.ctxs,
                                         starts):
            src = hbuf.reshape((hbuf.size))[doff:(doff + ndata)]
            ctx.push()
            drv.memcpy_htod_async(dest.ptr, src, strm)
            ctx.pop()

        self.synchronize()

    def fprop_fc(self, out, inputs, weights, layer=None):
        """
        In this case, the weights are shards, the acts are replicas
        ubuf should be of size nout/num_dev x mbsz
        """
        ubuf = layer.mempool[0]
        assert ubuf.shape == (weights.shape[0], inputs.shape[1])

        if layer.use_biases:
            biases = layer.biases.tlist
        else:
            biases = [None for i in range(self.num_dev)]

        for dbuf, ibuf, wt, bs, strm, ctx in zip(ubuf.tlist, inputs.tlist,
                                                 weights.tlist, biases,
                                                 self.strms, self.ctxs):
            ctx.push()
            self.ng.stream = strm
            self.ng.dot(wt, ibuf, dbuf)
            if layer.use_biases:
                self.ng.add(dbuf, bs, out=dbuf)
            ctx.pop()

        # Note, should be safe not to sync because each fragment is computed
        # on the same stream that originates the copy
        # self.synchronize()
        self.fragment_to_replica(ubuf, out)

    def bprop_fc(self, out, weights, deltas, layer=None):
        """
        Backward propagate the error through a fully connected network layer.

        Arguments:
            out (GPUTensor): Where to store the backward propagated errors.
            weights (GPUTensor): The weight coefficient values for this layer.
            deltas (GPUTensor): The error values for this layer
            layer (Layer): The layer object.
        """
        ubuf = layer.mempool[1]
        wtsz = weights.shape[0]
        starts = [i * wtsz for i in range(self.num_dev)]
        assert out.shape == (weights.shape[1], deltas.shape[1])
        assert ubuf.shape == out.shape

        for dbuf, ibuf, wt, strm, ctx, off in zip(out.tlist, deltas.tlist,
                                                  weights.tlist, self.strms,
                                                  self.ctxs, starts):
            ctx.push()
            self.ng.stream = strm
            self.ng.dot(wt.T, ibuf[off:(off + wtsz)], dbuf)
            ctx.pop()

        # Note, should be safe not to sync because each fragment is computed
        # on the same stream that originates the copy
        self.synchronize()
        self.reduce(out, ubuf)

    def update_fc(self, out, inputs, deltas, layer=None):
        wtsz = out.shape[0]
        starts = [i * wtsz for i in range(self.num_dev)]

        for obuf, dbuf, ibuf, strm, ctx, off in zip(out.tlist, deltas.tlist,
                                                    inputs.tlist, self.strms,
                                                    self.ctxs, starts):
            ctx.push()
            self.ng.stream = strm
            self.ng.dot(dbuf[off:(off + wtsz)], ibuf.T, obuf)
            ctx.pop()

        # self.synchronize()

    def update_fc_bias(self, err, out):
        """
        Compute the updated bias gradient for a fully connected network layer.

        Arguments:
            out (GPUTensor): Where to store the updated gradient value.
            err (GPUTensor): backpropagated error
        """
        wtsz = out.shape[0]
        starts = [i * wtsz for i in range(self.num_dev)]

        for ebuf, obuf, strm, ctx, off in zip(err.tlist, out.tlist, self.strms,
                                              self.ctxs, starts):
            ctx.push()
            self.ng.stream = strm
            self.ng.sum(ebuf[off:(off + wtsz)], axis=1, out=obuf)
            ctx.pop()

    def add_fc_bias(self, inputs, bias):
        """
        This is a no-op since we absorb the bias add into the fprop_fc call
        """
        pass

    def reduce_tensor(self, ary, async=True):
        '''
        This is the case for the scalar tensor
        '''
        assert ary.size == 1
        if ary.ptype == 'replica':
            self.ctxs[0].push()
            result = ary.tlist[0].get()
            self.ctxs[0].pop()
            return result

        result = np.zeros((self.num_dev, 1), ary.dtype)
        for i, (ctx, src_buf,
                strm) in enumerate(zip(self.ctxs, ary.tlist, self.strms)):
            ctx.push()
            drv.memcpy_dtoh_async(result[i], src_buf.ptr, strm)
            ctx.pop()
        self.synchronize()
        return result.sum()
Пример #15
0
                devA2[:] = devA1
                devB2[:] = devB1

            devC2 = ng.empty(dimC, dtype=np.float32)

            if op[0] == 't': devA1, devA2 = devA1.T, devA2.T
            if op[1] == 't': devB1, devB2 = devB1.T, devB2.T

            glops32x128 = 0
            glops128x32 = 0
            glops128x64 = 0

            if op != 'tn':
                glops32x128 = ng.dot(devA1,
                                     devB1,
                                     devC1,
                                     repeat=repeat,
                                     size='32x128')
            if op != 'nt':
                glops128x32 = ng.dot(devA1,
                                     devB1,
                                     devC1,
                                     repeat=repeat,
                                     size='128x32')
                glops128x64 = ng.dot(devA1,
                                     devB1,
                                     devC1,
                                     repeat=repeat,
                                     size='128x64')
            glops128x128 = ng.dot(devA1,
                                  devB1,